• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multiple beam correlation using single-mode fiber optics with application to interferometric imaging.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9004978_sip1_m.pdf
    Size:
    4.458Mb
    Format:
    PDF
    Description:
    azu_td_9004978_sip1_m.pdf
    Download
    Author
    Shaklan, Stuart Bruce.
    Issue Date
    1989
    Keywords
    Interferometers.
    Beam optics.
    Fiber optics.
    Imaging systems.
    Advisor
    Burke, James J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A study of the application of single-mode fiber optics to the multiple-beam interferometric recombination problem is presented. In the laboratory, the fibers have been used in wide bandwidth, two-arm, Mach-Zehnder test interferometers as well as a 5-telescope imaging interferometer connected to an all-fiber beam combiner. Based upon these experiments and some theoretical studies it is shown that fiber optics and fiber optic components such as directional couplers provide an excellent alternative to conventional optics such as mirrors, beamsplitters, and relay lenses. The equations describing the measurement of the complex degree of coherence in an interferometer with a single-mode fiber in each arm are derived. The equations reveal an important feature of the fibers: they filter phase fluctuations due to aberrations and turbulence at the input and convert them to intensity fluctuations at the output. This leads to a simplification of the calibration of measured visibilities. The coupling efficiency of light which has passed through a turbulent atmosphere is also studied as a function of fiber parameters and turbulence conditions for both image motion stabilized and non-stabilized cases. For the former case, coupling efficiency remains greater than 50% as long as telescope diameter is no larger than the turbulence coherence length. Beam combination architectures using arrays of directional couplers are fully discussed. Arrays accommodating up to 20 input beams are presented. The arrays require only N detector pixels for N input beams. A scheme of temporal multiplexing of the phase of each beam is used to identify individual fringe pairs. One possible scheme allows wide bandwidths even for large numbers of beams. A 5-telescope interferometer has been constructed and connected to an all-fiber beam combiner. Two extended objects were observed and reconstructed using standard radio astronomy VLBI software. The interferometer and beam combiner had good thermal and polarization stability and high throughput. Reconstructed images had dynamic ranges of about 50.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.