• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Thermally induced deformation and effects on groundwater flow in a discontinuous granite mass.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9010472_sip1_c.pdf
    Size:
    20.39Mb
    Format:
    PDF
    Download
    Author
    Awadalla, Awadalla Messiha.
    Issue Date
    1989
    Keywords
    Groundwater flow.
    Granite.
    Advisor
    Daemen, Jaak
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Existing analytical treatments of groundwater flow have mostly been founded on classical hydrodynamics, that groundwater motion is derivable from a velocity potential. This conception is in contradiction with the principle of conservation of energy, although it conforms with the principle of the conservation of mass (Hubbert, 1940, p. 285; Scheidegger, 1960, pps. 74-75; Bear, 1972, pps. 122-123). This dissertation shows that both principles can be utilized, based on the fact that a force potential at a point is equal to the work required to transfer a unit mass from this point to another point. This potential is given the symbol φ - gh - gz + (p/ρ) and is incorporated in the force field E. This potential is related to the flow field (q) by the anisotropic hydraulic conductivity. This relation forms a solid formulation for the theory of the flow of fluids through fractured porous media. This relation is applied to develop two basic equations. One partial differential equation, representing flow in the fracture, depending on the actual geometry of the fracture and incorporating the anisotropic parameter of the hydraulic conductivity based on the thermal induced stress and the force potential. A second partial differential equation (storage equation) in two-dimensions for non-steady groundwater flow in confined and saturated aquifers. This storage equation incorporates time, hydraulic conductivity and the radial coordinates. It is solved analytically using the Bessel's functions Jₒ and Kₒ. The two equations represent two models. Both the potential and the thermal hydraulic conductivity constitute a coupling between the two models to render the models a thermohydromechanical model. This aspect is the essential theme underlying this work and is implemented through a matrix-fracture system based on the slow flow and the fast flow behavior. The evaluation of the transient parameters including the aperture becomes possible and falls in line with the physics of the problem. This comprehensive analytical model is found to satisfy the transient demands of the mathematical physics. The application of the phenomena observed in the field from different sources and from Stripa Granite, rendered the model realistic and appropriate to the fractured porous media.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mining and Geological Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.