• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Laser-induced desorption and damage of water- and heavy water-dosed optical thin films.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9013143_sip1_c.pdf
    Size:
    27.46Mb
    Format:
    PDF
    Download
    Author
    Franck, Jerome Bruce.
    Issue Date
    1989
    Keywords
    Optical films
    Optical materials -- Defects
    Electron-stimulated desorption
    Advisor
    Porteus, J. O.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Previous work has shown that laser-induced desorption (LID) can prove useful for the determination of surface contamination. However, because of the nature of small-spot sampling utilized in the previous work, it proved rather difficult to gather statistically significant data. A solution to this problem that still allowed sampling the surface with small focused laser spots was to automate the sample manipulation, laser control, and data acquisition of the system. With the automation of the LID facility in place, a detailed study of the LID of water/heavy water (H₂O/D₂O) was undertaken. As in the earlier work, samples were irradiated with a hydrogen fluoride/deuterium fluoride (HF/DF) laser beam focused inside an ultrahigh vacuum (UHV) chamber. The molecules desorbed from the sample surface were partially contained in a glass envelope that also contained a quadrupole mass analyzer. Samples consisted of bulk-etched CaF₂ and optical thin-film coatings of CaF₂--undosed or H₂O/D₂O dosed--on a variety of substrates. Some analysis was performed on cleaved, single-crystal alkali halides. The focused laser spot size was 155 μm (l/e² diameter) for the HF laser and 138 μm (l/e² diameter) for the DF laser. Between 400 and 800 sites per sample were tested for each desorption onset analysis. A study was also performed to test the possibility of correlation between (1) laser-induced damage and defects and (2) laser-induced desorption and adsorption sites for some of the samples listed above. Attempts to deuterate and hydrate CaF₂ thin films met with limited success as laser-induced desorption samples. Other analysis techniques showed that dosing during the coating process produced a more ordered coating; in fact, dosing with H₂O reduced the optical absorption in the "H₂O" band, modified the damage morphology, and, along with a low temperature bakeout, raised the laser-damage threshold.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.