• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An intelligent function level backward state justification search for ATPG.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9013178_sip1_m.pdf
    Size:
    4.234Mb
    Format:
    PDF
    Description:
    azu_td_9013178_sip1_m.pdf
    Download
    Author
    Karunaratne, Maddumage Don Gamini.
    Issue Date
    1989
    Keywords
    Integrated circuits -- Very large scale integration -- Testing
    Electric circuits -- Testing
    Advisor
    Hill, Fredrick J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation describes an innovative approach to the state justification portion of the sequential circuit automatic test pattern generation (ATPG) process. Given the absence of a stored fault an ATPG controller invokes some combinational circuit test generation procedure, such as the D-algorithm, to identify a circuit state (goal state) and input vectors that will sensitize a selected fault. The state justification phase then finds a transfer sequence to the goal from the present state. A forward fault propogation search can be successfully guided through state space from the present state but the forward justification search is less efficient and the failure rate is high. The backward function level search invokes inverse RTL level primitives and exploits easy movement of data vectors in structured VLSI circuits. Examples illustrated are in AHPL. This search is equally applicable to an RTL level subset of VHDL. Combinational logic units are treated as functions and the circuit states are partitioned into control states and data states. The search proceeds backwards over the control state space starting from the goal state node and data states are transformed according to the control flow. Vectorized data paths in VLSI circuits and search guiding heuristics which favor convenient inverse functions keep the number of search nodes low. Partial covers, conceptually similar to singular covers in D-algorithm, model the inverse functions of combinational logic units. The search successfully terminates when a child state node logically matches the present state and the present state values can satisfy all the constraints encountered along the search path.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.