• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Contact stresses in interference-fit joints with application to sugar-mill roller assemblies.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9013184_sip1_m.pdf
    Size:
    6.723Mb
    Format:
    PDF
    Description:
    azu_td_9013184_sip1_m.pdf
    Download
    Author
    Shoukr, Shoukry Latif.
    Issue Date
    1989
    Keywords
    Joints (Engineering) -- Fatigue -- Mathematical models
    Torsion
    Rolling-mill machinery Structural design
    Advisor
    Kamel, H.A
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The interference-fit joint is widely used in machine design to connect two cylindrical machine elements. Its popularity comes from the simplicity of the assembly and the low cost of the production process. Even so, no study has examined the boundary non-linearities in the assembly of these joints. Moreover, the contact stresses and the stress concentration factors in interference-fit joints under torsional loads have not yet been examined in detail. In addition, the interface stresses and stress concentration factors in interference-fit joints subjected to bending loads have not been approached theoretically before. The sugar-mill roller is one of the oldest and most important examples of the interference-fit joints. The frequent fatigue failure of the sugar-mill rollers under reversed bending causes costly emergency line-shut downs. The versatility of the finite element method and the capability of the point-matching technique in handling contact problems have been combined, in the present work, to produce a surface-matching technique. It has been found that the complete-cohesion contact assumption may be acceptable for coefficients of friction ≥ 0.2, which is the case for most of the normally machined surfaces. An approach combining the semi-inverse displacement finite element method and the surface-matching technique has been developed to perform the torsional analysis. It has been found that the governing non-dimensional quantities are the ratio of the cohesion-length to the interface-length and the coefficient of friction divided by the load-level. The load-level is the ratio between the angle of twist of the shaft per unit length when the torque acts on the shaft alone and the amount of the diametral interference divided by the shaft diameter. A finite element model, using 8-noded solid elements together with linear interface elements, has been employed to locate the cohesion and slippage-zones in the sugar-mill roller under bending. The contact pressure increases along the compression side and decreases along the tension side. On the contrary, the interface shear decreases along the compression side due to bending and increases along the tension side. Subsequently, a larger slippage-length has been detected along the tension side.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.