Nonlinear optical experiments in sodium vapor and comparison with Doppler-broadened two-level-atom theory.
Name:
azu_td_9013186_sip1_m.pdf
Size:
6.223Mb
Format:
PDF
Description:
azu_td_9013186_sip1_m.pdf
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Two spectral regions of gain exist for a weak probe beam propagating through a medium of two-level-atoms pumped by a strong near-resonance field. Experimentally a cw ring-dye laser is used to explore this gain at the Na D₂ resonance in a vapor. Plane-wave calculations of probe-gain spectra which include the Doppler broadening inherent in a vapor agree well with experimental spectra obtained with a Fabry-Perot interferometer. Such two-beam-coupling gain might have applications as optical pre- or power amplifiers. The gain is also the primary step in four-wave-mixing. Mixing of the pump and sideband which experiences gain produces the medium polarization from which the fourth-wave arises. For phase-matched propagation the fourth-wave, which is at a frequency that experiences little or negative probe-gain (i.e., absorption), grows at nearly the same rate as the primary sideband. Together the two sidebands extract far more than twice as much energy from the pump than does the primary sideband acting alone. Experimentally four-wave-mixing which arises from noise at the gain-sideband-frequency is sometimes accompanied by conical emission at the fourth-wave sideband. Since this sideband is also seen on axis the explanation cannot be simply phase-matching. Simulations which include the full transverse nature of the experiment are currently running on a CRAY supercomputer. These simulations indicate that the radial variation of the medium index of refraction is responsible for conical emission.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Optical SciencesGraduate College