Show simple item record

dc.contributor.advisorHewlett, Martinez J.en_US
dc.contributor.authorBaldridge, Gerald Don.
dc.creatorBaldridge, Gerald Don.en_US
dc.date.accessioned2011-10-31T17:22:52Zen
dc.date.available2011-10-31T17:22:52Zen
dc.date.issued1989en_US
dc.identifier.urihttp://hdl.handle.net/10150/184934en
dc.description.abstractRibonuclease T1 oligonucleotide fingerprint (ONF) analysis was used to study genomic stability of La Crosse virus (Bunyaviridae) during vertical and horizontal transmission in the laboratory. No RNA genomic changes were detected in vertebrate cell culture-propagated virus isolated (following oral ingestion and replication) from the natural mosquito host, Aedes triseriatus. Genomic changes were not detected during transovarial passage of virus through two generations of mosquitoes or in virus isolated from suckling mice infected by transovarially infected mosquitoes. These results demonstrate that the La Crosse virus genome can remain relatively stable during transovarial transmission (TOT) in the insect host and during transfer between insect and vertebrate hosts. ONF analysis was used to demonstrate TOT of reassortant California serogroup bunyaviruses in Aedes treiseriatus. Mosquitoes were simultaneously inoculated with temperature sensitive mutants of La Crosse and Snowshoe hare viruses able to replicate at 33°C but not at 40°C. Putative reassortants, selected by replication at 40°C, were isolated from progeny mosquitoes and mice infected by these mosquitoes. ONF analysis confirmed that they were reassortants. Approximately 75% of the M segment and 25% of the L segment nucleotide sequences of Inkoo virus (Bunyaviridae) were determined by Sanger dideoxynucleotide sequencing of cDNA clones. Comparison of the M segment nucleotide and deduced amino acid sequences with those of four other bunyaviruses, representing two serogroups, revealed greater conservation of nucleotide than of amino acid sequence between serogroups. Areas of the sequences representing nonstructural protein(s) were less conserved than glycoprotein regions. The L segment nucleotide sequence begins with the known 3' end of the viral L segment and contains an open reading frame encoding the amino terminal 505 amino acids of the viral L protein. The amino acid sequence contains the glycine-aspartate-aspartate motif which is conserved in many RNA-dependent RNA polymerases. Comparison of the L segment sequences with those in the GEN Bank Data Base revealed no significant similarities with any other sequence.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectBunya virusesen_US
dc.subjectHost-virus relationshipsen_US
dc.subjectVirus-vector relationshipsen_US
dc.subjectViral geneticsen_US
dc.subjectAmino acid sequenceen_US
dc.titleMolecular biology of Bunyavirus-host interactions.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc703608043en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberLindell, Thomas J.en_US
dc.contributor.committeememberBrower, Dannny L.en_US
dc.contributor.committeememberBernstein, Harrisen_US
dc.contributor.committeememberGerba, Charles P.en_US
dc.identifier.proquest9014664en_US
thesis.degree.disciplineMolecular and Cellular Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-23T20:11:54Z
html.description.abstractRibonuclease T1 oligonucleotide fingerprint (ONF) analysis was used to study genomic stability of La Crosse virus (Bunyaviridae) during vertical and horizontal transmission in the laboratory. No RNA genomic changes were detected in vertebrate cell culture-propagated virus isolated (following oral ingestion and replication) from the natural mosquito host, Aedes triseriatus. Genomic changes were not detected during transovarial passage of virus through two generations of mosquitoes or in virus isolated from suckling mice infected by transovarially infected mosquitoes. These results demonstrate that the La Crosse virus genome can remain relatively stable during transovarial transmission (TOT) in the insect host and during transfer between insect and vertebrate hosts. ONF analysis was used to demonstrate TOT of reassortant California serogroup bunyaviruses in Aedes treiseriatus. Mosquitoes were simultaneously inoculated with temperature sensitive mutants of La Crosse and Snowshoe hare viruses able to replicate at 33°C but not at 40°C. Putative reassortants, selected by replication at 40°C, were isolated from progeny mosquitoes and mice infected by these mosquitoes. ONF analysis confirmed that they were reassortants. Approximately 75% of the M segment and 25% of the L segment nucleotide sequences of Inkoo virus (Bunyaviridae) were determined by Sanger dideoxynucleotide sequencing of cDNA clones. Comparison of the M segment nucleotide and deduced amino acid sequences with those of four other bunyaviruses, representing two serogroups, revealed greater conservation of nucleotide than of amino acid sequence between serogroups. Areas of the sequences representing nonstructural protein(s) were less conserved than glycoprotein regions. The L segment nucleotide sequence begins with the known 3' end of the viral L segment and contains an open reading frame encoding the amino terminal 505 amino acids of the viral L protein. The amino acid sequence contains the glycine-aspartate-aspartate motif which is conserved in many RNA-dependent RNA polymerases. Comparison of the L segment sequences with those in the GEN Bank Data Base revealed no significant similarities with any other sequence.


Files in this item

Thumbnail
Name:
azu_td_9014664_sip1_w.pdf
Size:
4.195Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record