• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Coded-aperture transaxial tomography using modular gamma cameras.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9014678_sip1_m.pdf
    Size:
    4.691Mb
    Format:
    PDF
    Description:
    azu_td_9014678_sip1_m.pdf
    Download
    Author
    Roney, Timothy Joseph.
    Issue Date
    1989
    Keywords
    Nuclear medicine
    Imaging systems in medicine
    Tomography
    Advisor
    Hill, Frederick J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Imaging in nuclear medicine involves the injection of a radioactive tracer into the body and subsequent detection of the radiation emanating from an organ of interest. Single-photon emission computed tomography (SPECT) is the branch of nuclear medicine that yields three-dimensional maps of the distribution of a tracer, most commonly as a series of two-dimensional slices. One major drawback to transaxial tomographic imaging in SPECT today is the rotation required of a gamma camera to collect the tomographic data set. Transaxial SPECT usually involves a large, single-crystal scintillation camera and an aperture (collimator) that together only satisfy a small portion of the spatial sampling requirements simultaneously. It would be very desirable to have a stationary data-collection apparatus that allows all spatial sampling in the data set to occur simultaneously. Aperture or detector motion (or both) is merely an inconvenience in most imaging situations where the patient is stationary. However, aperture or detector motion (or both) enormously complicate the prospect of tomograhically recording dynamic events, such as the beating heart, with radioactive pharmaceuticals. By substituting a set of small modular detectors for the large single-crystal detector, we can arrange the usable detector area in such a way as to collect all spatial samples simultaneously. The modular detectors allow for the possibility of using other types of stationary apertures. We demonstrate the capabilities of one such aperture, the pinhole array. The pinhole array is one of many kinds of collimators known as coded apertures. Coded apertures differ from conventional apertures in nuclear medicine in that they allow for overlapping projections of the object on the detector. Although overlapping projections is not a requirement when using pinhole arrays, there are potential benefits in terms of collection efficiency. There are also potential drawbacks in terms of the position uncertainty of emissions in the reconstruction object. The long-term goal of the research presented is dynamic SPECT imaging of the heart. The basic concepts and tasks involved in transaxial SPECT imaging with pinhole arrays are presented along with arguments for the combination of modular gamma cameras and pinhole arrays. We demonstrate by emulation two methods of tomographically imaging a stationary single object slice and present results for these two systems on object space grids of 10cm x 10cm and 20cm x 20cm.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.