• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boundary layer receptivity mechanisms relevant to laminar flow control.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9022102_sip1_w.pdf
    Size:
    4.184Mb
    Format:
    PDF
    Download
    Author
    Choudhari, Meelan.
    Issue Date
    1990
    Keywords
    Boundary layer
    Turbulence
    Laminar flow
    Advisor
    Kerschen, Edward J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Receptivity processes by which free-stream acoustic waves generate instability waves in boundary layers are investigated. Concentration is placed on mechanisms associated with local regions of short scale variation in wall suction or admittance distribution. These mechanisms are relevant to laminar flow control technology, in which suction is utilized to control the growth of boundary layer instabilities. The receptivity process requires a transfer of energy from the long wavelength of the free-stream disturbance to the short wavelength of the instability wave. In the case of wall suction, this occurs through the unsteady modulation, by the acoustic wave, of the short scale mean flow variation due to the steady wall suction. In the wall admittance mechanism, the boundary condition for the unsteady motion contains a short scale variation which directly scatters energy from the acoustic wave into the instability wave. The latter mechanism does not require a short scale adjustment in the mean boundary layer. Time harmonic, two and three-dimensional interactions are analyzed using the asymptotic, high Reynolds number, triple deck structure. The influence of subsonic compressibility is examined for the case of two-dimensional interactions, and a similarity transform is found which reduces the problem to an equivalent incompressible flow. For three-dimensional interactions, a similarity transform is possible only in the Fourier transform wavenumber space, and in the equivalent two-dimensional problem the frequency is complex. However, in many cases of practical interest, the imaginary component of this frequency is quite small and can be neglected. The acoustic wave orientation and the geometry of the wall suction or admittance distribution are found to significantly influence the amplitude of the generated instability wave. For an isolated, three-dimensional region of wall suction or admittance, instability wave growth is confined to a downstream, wedge shaped region. The saddle point method is utilized to calculate the characteristics of this instability wave pattern. In some ranges of parameter space, two saddle points are found to make comparable contributions. The instability wave pattern in these directions exhibits a beat phenomenon, due to constructive and destructive interference of the contributions from the two saddle points.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.