• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of vascular serotonin receptors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9024506_sip1_m.pdf
    Size:
    3.561Mb
    Format:
    PDF
    Description:
    azu_td_9024506_sip1_m.pdf
    Download
    Author
    Killam, Anne Louise.
    Issue Date
    1990
    Keywords
    Serotonin -- Receptors
    Vascular smooth muscle -- Innervation
    Serotoninergic mechanisms
    Advisor
    Nelson, David L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Determination of the physiologic roles of serotonin (5-HT) has long been hampered by the lack of compounds specific for certain of the 5-HT receptor subtypes. The objective of this dissertation was to characterize vascular serotonin receptors in certain arteries and to develop functional assays for the putative 5-HT₁(A) and 5-HT₂ receptors in vascular tissue to test novel compounds. Although 5-HT₁(A) receptor involvement in the 5-HT contraction of the canine basilar artery was previously reported, the 8-OH-DPAT (5-HT₁(A) specific agonist) EC₅₀ values in the canine, rabbit, guinea pig, and bovine basilar arteries studies were not consistent with the presence of 5-HT₁(A) receptors. Studies examining the 5-HT₂ selective antagonist ketanserin, several novel aryltryptamines with a range of affinities, and enantiomers of spiroxatrine, in the 5-HT-contracted rat aorta showed a good correlation between the aorta affinities and the affinities of these compounds at the [³H] ketanserin binding site (defined as 5-HT₂) in the rat frontal cortex. Comparison of the affinities of several known and novel compounds in the rat aorta and the rabbit femoral artery to the [³H] ketanserin site affinities in the frontal cortices of both species showed that the rabbit femoral artery 5-HT₂-like receptor was similar but not identical to either the rat aorta or the CNS sites from either species. The rabbit aorta and the rat femoral artery were then examined to determine if the 5-HT₂ receptor heterogeneity was species or vascular bed specific. The results from all four vascular tissues showed that no two tissues had identical responses to the compounds studied. The rat aorta appeared unique in the lack of agonist activity of RU24969 and the non-competitive antagonism of 5-HT by methysergide, but correlated to the CNS site for the affinities of all compounds. The major finding of the dissertation was the definitive evidence for vascular 5-HT₂ receptor heterogeneity; this subtype was previously thought to be homogeneous. Development of more selective compounds for 5-HT receptor subtypes may lead to greater understanding of the physiological roles of serotonin.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.