• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A dynamic thermal model of a self-sustaining closed environment life support system.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9024511_sip1_c.pdf
    Size:
    5.106Mb
    Format:
    PDF
    Download
    Author
    Luttmann-Valencia, Francisco.
    Issue Date
    1990
    Keywords
    Engineering
    Advisor
    Fazzolari, R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A dynamic, thermal model of a Selfsustaining Closed Environment Life Support System (SCELSS), a closed system designed to extend the range of human habitat to extreme climatic zones on Earth and Near Space, is developed and used to simulate the thermal behaviour of a SCELSS located on the surface of the Earth. The resulting heat loads on the air conditioning unit for a given control strategy and two different SCELSS configurations are studied. The SCELSS is represented by thermal models of the biome, the physical structure encompassing the cover, air and vegetation, the ground, and an optional body of water, and by the model of an air handling unit, encompassing a fan, coils and a control to track prescribed biome air temperature and relative humidity set points. A modular approach is used in developing the model to allow for future expansion to include biological aspects in the representation of the SCELSS. The structure of the models in conformed to the formalism of the computer simulation program TRNSYS. A test for isothermality is used to verify the mathematical and thermodynamic behaviour of the model. Simulations with the model show that a large fraction of the solar input is converted into moisture transferred to the biome air, which has to be dehumidified in the air conditioning unit coils to maintain livable conditions inside, making substantial reheat of the air necessary. The inclusion of a pond in the SCELSS configuration proves to modify the normal path of heat through the biome substantially, reducing peak and total air conditioning loads.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Nuclear and Energy Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.