• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Population biology of Octopus digueti and the morphology of American tropical octopods.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9024636_sip1_m.pdf
    Size:
    4.639Mb
    Format:
    PDF
    Description:
    azu_td_9024636_sip1_m.pdf
    Download
    Author
    Voight, Janet Ruth.
    Issue Date
    1990
    Keywords
    Biology
    Advisor
    Strauss, Richard E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    My dissertation explores octopod ecoloy, morphology and evolution. Using an artificial shelter trap technique (Voight, 1988a), parameters of a wild population of Octopus digueti are monitored for one year. Octopus movement correlates with sea temperature but is reduced under full moonlight. Enlarged suckers reliably indicate male maturity in this species. This first definition of an age class in octopuses allows field growth rates to be compared to those from laboratory studies. Octopus digueti growth in the wild equals that in the lab; average life span may be only 6 months during which time individuals may grow from a hatching weight of 40 mg to over 40g. Individuals show the uniparous life history documented in lab studies. Cohorts appear not due to reproductive synchrony, but to seasonal temperature fluctuations. Genetic differences probably control individual growth rate and life span. To test the reliability of morphology of preserved octopus specimens, ln-transformed measurements are plotted versus ln mantle length. Body measurements are strongly correlated with size; preservation does not therefore eliminate information contained in specimens. Principal component analysis reveals shallow water tropical octopuses vary primarily in arm length, mantle length and sucker diameter. Trans-Atlantic conspecific populations are morphologically indistinguishable. Hypothesized species relationships (Voight, 1988b) are supported, despite considerable overlap among species. No secondary sexual dimorphism except enlarged suckers is present in these species. Octopuses from rocky habitats have longer arms and smaller mantles than do those from sandy habitats. In the Octopodidae, arm length, head width and sucker diameter contribute most size-free morphological variation. Sucker size correlates inversely with depth due to hydrostatic pressure. Arm length and head width variation correlate inversely with latitudinal distribution, and are associated with the number of sucker rows. Subfamilies defined by the number of sucker rows (Voss, 1988a), may represent overtly similar, paraphyletic groups. Cladistic analysis of the suborder Incirrata show that Voss' subfamilies are paraphyletic groups; Robson's (1932) subfamilies are supported. The Argonautida are the most primitive incirrate group, the Ctenoglossa and Octopodidae are sister taxa. The incirrate octopods may have evolved from a deep sea, rather than a shallow-water, ancestor.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Ecology & Evolutionary Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.