• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Specifications extraction and synthesis: Their correlations with preliminary design.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9024654_sip1_m.pdf
    Size:
    5.575Mb
    Format:
    PDF
    Description:
    azu_td_9024654_sip1_m.pdf
    Download
    Author
    Umaretiya, Jagdish R.
    Issue Date
    1990
    Keywords
    Engineering design -- Data processing
    Engineering, Aerospace
    Computer Science
    Computer-aided engineering
    Expert systems (Computer science)
    Advisor
    Joshi, Shiv
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This report addresses the research applied towards the automation of the engineering design process, in particular the structural design process. The three important stages of the structural design process are: the specifications, preliminary design and the detailed design. An iterative redesign architecture of the structural design process lends itself to automation. The automation of the structural design can improve both the cost and the reliability, and enhance the productivity of the human designers. To the extent that the assumptions involved in the design process are explicitly represented and automatically inforced, the design errors resulting from the violated assumptions can be avoided. Artificial Intelligence (AI) addresses the automation of complex and knowledge-intensive tasks such as the structural design process. It involves the development of the Knowledge Based Expert System (KBES). There are several tools, also known as expert shells, and languages available for the development of knowledge-based expert systems. A general purpose language, called LISP, is very popular among researchers in AI and is used as an environmental tool for the development of the KBES for the structural design process. The resulting system, called Expert-SEISD, is very generic in nature. The Expert-SEISD is composed of the user interface, inference engine, domain specific knowledge and data bases and the knowledge acquisition. The present domain of the Expert-SEISD encompasses the design of structural components such as beams and plates. The knowledge acquisition module is developed to facilitate the incorporation of new capabilities (knowledge or data) for beams, plates and for new structural components. The decision making is an integral part of any design process. A decision-making model suitable for the specifications extraction and the preliminary design phases of the structural design process is proposed and developed based on the theory of fuzzy sets. The methods developed here are evaluated and compared with similar methods available in the literature. The new method, based on the union of fuzzy sets and contrast intensification, was found suitable for the proposed model. It was implemented as a separate module in the Expert-SEISD. A session with the Expert-SEISD is presented to demonstrate its capabilities of beam and plate designs and knowledge acquisition.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.