• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A quasilinear theory of time-dependent nonlocal dispersion in geologic media.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9024658_sip1_m.pdf
    Size:
    4.595Mb
    Format:
    PDF
    Description:
    azu_td_9024658_sip1_m.pdf
    Download
    Author
    Zhang, You-Kuan.
    Issue Date
    1990
    Keywords
    Groundwater flow -- Mathematical models
    Porous materials -- Mathematical models
    Quasilinearization
    Stochastic analysis.
    Advisor
    Neuman, Shlomo P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A theory is presented which accounts for a particular aspect of nonlinearity caused by the deviation of plume "particles" from their mean trajectory in three-dimensional, statistically homogeneous but anisotropic porous media under an exponential covariance of log hydraulic conductivities. Quasilinear expressions for the time-dependent nonlocal dispersivity and spatial covariance tensors of ensemble mean concentration are derived, as a function of time, variance σᵧ² of log hydraulic conductivity, degree of anisotropy, and flow direction. One important difference between existing linear theories and the new quasilinear theory is that in the former transverse nonlocal dispersivities tend asymptotically to zero whereas in the latter they tend to nonzero Fickian asymptotes. Another important difference is that while all existing theories are nominally limited to situations where σᵧ² is less than 1, the quasilinear theory is expected to be less prone to error when this restriction is violated because it deals with the above nonlinearity without formally limiting σᵧ². The theory predicts a significant drop in dimensionless longitudinal dispersivity when σᵧ² is large as compared to the case where σᵧ² is small. As a consequence of this drop the real asymptotic longitudinal dispersivity, which varies in proportion to σᵧ² when σᵧ² is small, is predicted to vary as σᵧ when σᵧ² is large. The dimensionless transverse dispersivity also drops significantly at early dimensionless time when σᵧ² is large. At late time this dispersivity attains a maximum near σᵧ² = 1, varies asymptotically at a rate proportional to σᵧ² when σᵧ² is small, and appears inversely proportional to σᵧ when σᵧ² is large. The actual asymptotic transverse dispersivity varies in proportion to σᵧ⁴ when σᵧ² is small and appears proportional to σᵧ when σᵧ² is large. One of the most interesting findings is that when the mean seepage velocity vector μ is at an angle to the principal axes of statistical anisotropy, the orientation of longitudinal spread is generally offset from μ toward the direction of largest log hydraulic conductivity correlation scale. When local dispersion is active, a plume starts elongating parallel to μ. With time the long axis of the plume rotates toward the direction of largest correlation scale, then rotates back toward μ, and finally stabilizes asymptotically at a relatively small angle of deflection. Application of the theory to depth-averaged concentration data from the recent tracer experiment at Borden, Ontario, yields a consistent and improved fit without any need for parameter adjustment.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.