• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The role of epoxidation in 4-vinylcyclohexene-induced ovarian toxicity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9025079_sip1_w.pdf
    Size:
    4.018Mb
    Format:
    PDF
    Download
    Author
    Smith, Bill J.
    Issue Date
    1990
    Keywords
    Alkenes -- Toxicology
    Ovaries -- Effect of chemicals on
    Ovaries -- Cancer -- Animal models
    Carcinogenesis
    Advisor
    Sipes, I. Glenn
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The basis for the species difference between B6C3F1 mice (susceptible) and Fischer 344 rats (resistant) to 4- vinylcyclohexene (VcH)-induced ovarian tumorigenicity was investigated. Greater than 95% of a single oral 400 mg/kg dose of [¹⁴C]VCH was eliminated in 48 hr by mice and rats. Approximately 50-60% of the administered dose was excreted in the urine, while the remaining 30-40% of the dose was expired as organically soluble radioactivity. VCH-treated mice had dramatically higher blood concentrations of the VCH metabolite VCH-1,2-epoxide compared to VCH-treated rats. Furthermore, mouse hepatic microsomes catalyzed the conversion of VCH to VCH-1,2-epoxide at greater rates than rat hepatic microsomes. The destruction of oocytes was used as an index of ovarian toxicity to compare the potency of VCH and VCH epoxides in the mouse and rat. VCH markedly reduced the number of small oocytes in mice while no detectable change in oocyte number occurred in rats. Epoxide metabolites of VCH destroyed oocytes in both species at lower doses than VCH. Inhibition of VCH epoxidation reduced VCH-1,2-epoxide blood levels and partially protected mice from VCH-induced ovarian toxicity. Thus, the conversion of VCH to epoxides and the subsequent destruction of oocytes are critical steps in the induction of ovarian tumors by VCH. Rats may be resistant because the amount of VCH converted to epoxides is insufficient to destroy oocytes. The biochemical basis for the species difference in the rate of VCH epoxidation by hepatic microsomes from mice and rats was investigated. studies using inducers and inhibitors of certain cytochrome(s) P450 showed that hepatic microsomes of female mice perform VCH epoxidation at greater rates than rats because of the constitutive expression of P450 IIA and lIB forms. Hepatic microsomes of human females perform VCH epoxidation at lower rates than rats. This suggests that if the rate of epoxidation of VCH by the liver is the most important factor determining susceptibility to VCH toxicity then the rat may better model the response of humans exposed to VCH than mice.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.