• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Numerical modeling of fault formation and the dynamics of existing faults.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9100054_sip1_m.pdf
    Size:
    7.299Mb
    Format:
    PDF
    Description:
    azu_td_9100054_sip1_m.pdf
    Download
    Author
    Williams, Charles Addison, Jr.
    Issue Date
    1990
    Keywords
    Faults (Geology)
    Finite element method
    Geophysics.
    Advisor
    Richardson, Randall M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This research is an investigation into two different aspects of the faulting process. The first part of the study focuses on the initial stages of fault formation, while the second analyzes the deformation produced by an existing fault. The section on fault formation is an attempt to determine whether slip on an existing fault has a significant effect on the formation of subsequent faults. A two-dimensional elastic finite element technique is used to examine the system of stresses produced by slip on an initial fault, assuming that deformation occurs either elastically or by brittle failure. A Mohr-Coulomb failure criterion is used to determine the most likely region of secondary fault initiation. A strain energy criterion is then used to find the preferred direction of fault propagation. The study on fault formation is subdivided into two sections representing two idealized tectonic environments: purely extensional and purely compressional. The section on extensional fault formation explains the prevalence of grabens in extensional tectonic regimes as a consequence of the stress perturbations due to slip on an initial normal fault. Slip on the initial fault produces a region of high proximity to failure at the surface of the downthrown block. A secondary fault would be expected to initiate in this region. The direction of propagation of this fault that most effectively relieves the shear stress (and therefore minimizes the total strain energy) is toward the initial fault, resulting in an antithetic orientation, or graben. The width of the graben is found to be controlled by the depth of the initial normal fault, rather than the depth to a change in material properties. The study of compressional fault formation indicates that, except for steeply-dipping faults, the presence of an initial thrust fault tends to suppress the formation of other faults in its vicinity. However, if a secondary fault initiates near an initial thrust fault, the direction in which it propagates will be influenced by the presence of the initial fault. The way in which it is influenced is dependent on the fault dip. The final part of this study examines the deformation produced by repeated earthquake cycles on the San Andreas fault in southern California. A three-dimensional, time-dependent kinematic finite element model is used to investigate the influence of slip distribution and rheological parameters on the predicted horizontal and vertical deformation. The models include depth-varying rheological properties and power-law viscoelastic behavior. The predicted deformation patterns are fairly sensitive to the parameters used in this study. Of particular importance is the calculation of vertical uplift rate since, in many cases, models that cannot be distinguished from each other on the basis of horizontal deformation may produce distinctive vertical uplift patterns.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.