Show simple item record

dc.contributor.advisorHuete, Alfredoen_US
dc.contributor.authorMoran, Mary Susan.
dc.creatorMoran, Mary Susan.en_US
dc.date.accessioned2011-10-31T17:28:41Zen
dc.date.available2011-10-31T17:28:41Zen
dc.date.issued1990en_US
dc.identifier.urihttp://hdl.handle.net/10150/185136en
dc.description.abstractThe ultimate goal of this dissertation was to produce maps of surface evaporation for agricultural areas based on Landsat Thematic Mapper (TM) spectral data. This achievement was dependent upon successful attainment of four intermediate goals: (1) Enhancement of TM thermal spatial resolution; (2) Atmospheric correction of TM visible and near-IR spectral data; (3) Atmospheric correction of TM thermal data; and (4) Remote estimation of crop aerodynamic properties. A statistical technique was developed to combine low-resolution (120 m) TM thermal data (TM6) with higher resolution (30 m) TM reflective data based on the relation between TM6 and the TM red and near-IR wavebands. This method was successful in improving the visible appearance of the TM6 image and retaining the original thermal spectral information over diverse agricultural landscapes. Several atmospheric correction procedures were examined to determine which techniques could provide the ease and accuracy necessary for the remote ET model. The Lowtran7 radiative transfer code was chosen for correction of TM visible and near-IR data (TM1-TM4) because it provided adequate accuracy (±0.02 reflectance, 1 σ RMS) and easy application. For TM6, results using the Lowtran7 code with a variety of atmospheric models were unsatisfactory. However, a simple linear regression of measured surface temperatures (T(s)) and TM6 digital numbers provided estimates of T(s) to within ±1.2°C of measured values. Though the procedure was accurate, it required concurrent ground-based measurements of T(s) and would obviously be inconvenient if it were used on an operational basis. Reasonable estimates of aerodynamic parameters were made for an alfalfa canopy from remote measurements of red and near-IR reflectance. The uncertainty in sensible heat flux density associated with the error in remote estimates of aerodynamic resistance was ±25%. Since these results were probably crop-specific and possibly site-specific, more data sets of this nature will need to be collected for other crops to determine a universal relation between remotely sensed data and aerodynamic properties. Data from the satellite-based TM sensor and ground-based meteorological instruments were combined to produce maps of latent heat flux density (LE: a function of evaporation rate (E) and heat of vaporization (L)) for Maricopa Agricultural Center, Arizona. The satellite-based estimates of LE differed from coincident ground-based measurements, using a Bowen-ratio apparatus, by 4% in cotton and -6% in alfalfa. These results were within the suggested accuracy goal of ±11%.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysicsen_US
dc.subjectAgriculture.en_US
dc.titleA satellite-based approach for evaluation of the spatial distribution of evapotranspiration from agricultural lands.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc708653401en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberGay, Lloyden_US
dc.contributor.committeememberPost, Donen_US
dc.contributor.committeememberSlater, Philen_US
dc.contributor.committeememberJackson, Rayen_US
dc.identifier.proquest9100554en_US
thesis.degree.disciplineSoil and Water Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-13T21:57:05Z
html.description.abstractThe ultimate goal of this dissertation was to produce maps of surface evaporation for agricultural areas based on Landsat Thematic Mapper (TM) spectral data. This achievement was dependent upon successful attainment of four intermediate goals: (1) Enhancement of TM thermal spatial resolution; (2) Atmospheric correction of TM visible and near-IR spectral data; (3) Atmospheric correction of TM thermal data; and (4) Remote estimation of crop aerodynamic properties. A statistical technique was developed to combine low-resolution (120 m) TM thermal data (TM6) with higher resolution (30 m) TM reflective data based on the relation between TM6 and the TM red and near-IR wavebands. This method was successful in improving the visible appearance of the TM6 image and retaining the original thermal spectral information over diverse agricultural landscapes. Several atmospheric correction procedures were examined to determine which techniques could provide the ease and accuracy necessary for the remote ET model. The Lowtran7 radiative transfer code was chosen for correction of TM visible and near-IR data (TM1-TM4) because it provided adequate accuracy (±0.02 reflectance, 1 σ RMS) and easy application. For TM6, results using the Lowtran7 code with a variety of atmospheric models were unsatisfactory. However, a simple linear regression of measured surface temperatures (T(s)) and TM6 digital numbers provided estimates of T(s) to within ±1.2°C of measured values. Though the procedure was accurate, it required concurrent ground-based measurements of T(s) and would obviously be inconvenient if it were used on an operational basis. Reasonable estimates of aerodynamic parameters were made for an alfalfa canopy from remote measurements of red and near-IR reflectance. The uncertainty in sensible heat flux density associated with the error in remote estimates of aerodynamic resistance was ±25%. Since these results were probably crop-specific and possibly site-specific, more data sets of this nature will need to be collected for other crops to determine a universal relation between remotely sensed data and aerodynamic properties. Data from the satellite-based TM sensor and ground-based meteorological instruments were combined to produce maps of latent heat flux density (LE: a function of evaporation rate (E) and heat of vaporization (L)) for Maricopa Agricultural Center, Arizona. The satellite-based estimates of LE differed from coincident ground-based measurements, using a Bowen-ratio apparatus, by 4% in cotton and -6% in alfalfa. These results were within the suggested accuracy goal of ±11%.


Files in this item

Thumbnail
Name:
azu_td_9100554_sip1_w.pdf
Size:
6.877Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record