• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Experimental evaluation of scanned focussed ultrasound hyperthermia models in canine muscle in vivo.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9103021_sip1_m.pdf
    Size:
    5.088Mb
    Format:
    PDF
    Description:
    azu_td_9103021_sip1_m.pdf
    Download
    Author
    Moros, Eduardo Gerardo.
    Issue Date
    1990
    Keywords
    Engineering
    Advisor
    Roemer, Robert B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A theoretical model for scanned focussed ultrasound hyperthermia was evaluated in canine muscle in vivo. This model is composed of two models: an ultrasonic power deposition model and a heat transfer model. One ultrasound model and two bio-heat transfer models were considered. (1) Ultrasound field distributions were measured using thermal techniques in both canine thighs in vivo and in water. The experimental results were compared with distributions obtained from a model based on the one dimensional integration of the Rayleigh-Sommerfeld diffraction integral. The comparisons showed that the model is a good approximation to the distributions measured in water. The main lobe profiles obtained in the muscle also agreed well with both model predictions and results measured in water. However, these in vivo distributions showed enlargement of the side lobes. It was also found that muscle interfaces produced considerable beam distortions and increased side lobes. These findings were verified by measurements of the peak intensity and the total acoustic power attenuation coefficients for passage of the beams through thighs that showed that the former was about 40% higher than the latter. Also, absolute intensities at the acoustic focus were measured in water with a hydrophone for 11 transducers ranging in frequency from 0.246 to 3.54 MHz. When these intensities were compared to model predictions, it was found that the model overestimated the peak intensity by a factor of less than 2. That is, the model can be used to obtain upper bounds for absolute intensity. (2) Steady state temperature profiles from a simple (uniform blood perfusion) three dimensional bio-heat transfer model (Pennes), and from a simple (isotropic thermal conductivity) three dimensional effective thermal conductivity model, were compared with temperatures measured during scanned focussed ultrasound hyperthermia experiments in canine thighs in vivo. The experimental data consisted of radial temperature profiles across single octagonal scans measured at different depths into the thighs. The results showed that the bio-heat transfer equation predicted the experimental trends qualitatively and that the effective thermal conductivity equation failed to do so. Both models failed to predict the influence of thermally significant vessels. A scanned focussed ultrasound model composed of the ultrasound model evaluated here and the bio-heat transfer equation, can be used to predict the major features of temperature fields for hyperthermia patient treatment planning.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.