• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Gas permeability changes in rock salt during deformation.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9103023_sip1_m.pdf
    Size:
    8.692Mb
    Format:
    PDF
    Description:
    azu_td_9103023_sip1_m.pdf
    Download
    Author
    Stormont, John Charles.
    Issue Date
    1990
    Advisor
    Daemen, J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A laboratory, field and numerical study of the changes in gas permeability which rock salt experiences during deformation is given. The laboratory tests involves gas permeability and porosity measurements coincident with hydrostatic and triaxial quasi-static, stress-rate controlled compression tests. The permeability and porosity of the as-received samples decrease significantly as a result of hydrostatic loading. These changes are largely irreversible, and are believed to "heal" or return the rock to a condition comparable to its undisturbed state. Deviatoric loading induces a dramatic change in pore structure. The permeability can increase more than 5 orders of magnitude over the initial (healed) state as the samples are loaded. The gas permeability changes are consistent with flow paths initially developing along the grain boundaries and then along axial secondary tensile cracks. The results from two sets of in situ gas permeability measurements from the underground workings of the WIPP Facility are given. The results consistently indicate that there is no measurable gas permeability prior to disturbing the rock by excavation. In the immediate vicinity of an excavation, the gas permeability can be 5 orders of magnitude greater than the undisturbed permeability. A numerical procedure to predict the in situ permeability is developed based on the results of the laboratory tests. The stress and strain fields surrounding excavations in rock salt, predicted with an elastoplastic model, are used in a model of gas permeability based on the equivalent channel model. The zone of the gas permeable rock is predicted well, but the magnitude of the gas permeability is underpredicted very near excavations. The gas permeability which develops in situ is principally a result of flow along dilated grain boundaries.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mining and Geological Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.