• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Phosphates in suspensions of alkaline, basaltic soils.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9105904_sip1_m.pdf
    Size:
    2.519Mb
    Format:
    PDF
    Description:
    azu_td_9105904_sip1_m.pdf
    Download
    Author
    Brito, Jorge Manuel Santos Sousa.
    Issue Date
    1990
    Keywords
    Agriculture.
    Advisor
    Bohn, Hinrich
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The phosphate solid-solution activities in the A and A₁ horizons of ten alkaline soils from basalt were calculated in order to assess their conformity to solid-solution behavior. Nine soils were from the Cape Verde Islands and one from Arizona. Four of the Cape Verdean soils belonged to the same series (Ponta) but presented different levels of P fertilization. The other soils were not fertilized. All soils behaved in conformity with solid-solution theory. Three assumptions were made: (1) Surfaces of minerals are similar because of weathering; (2) Partial equilibrium was reached; (3) The mole fraction of the total solid composition is similar to the X of the surface of the solid. A preliminary test was conducted for optimization of experimental conditions, which turned out to be: 24-25°C; 1:5 soil solution ratio; 0.01M CaCl₂ extracting solutions. The relation of pH vs. time was used as the indicator of change and suspensions were kept for 21 days until pH stabilization. After filtration, electrical conductivity, soluble Ca, Mg and P were measured. A second experiment was done on selected samples, in order to study the influence of added Ca on the Solid Activity Coefficient (SAC). SAC and ionic solid activity coefficients for phosphates were computed from the data and the equation IAP = g X Ksp. Ksp of different Ca phosphates were taken as reference. Best results were found with octocalcium phosphate and bobierrite as reference for calcium and magnesium phosphates respectively. The curves of log SAC vs. P(added) were linear, indicating confirmation of solid solution behavior. Fertilized and virgin soils presented different slopes for those curves. Based on octocalcium phosphate, the basaltic soils yielded phosphate ionic solubility coefficients on the range 1 to 4 which are very low compared with similar coefficients calculated in the literature for non basaltic soils. The amorphous nature of basaltic minerals was considered as an explanation for the solid-solution behavior observed. Results show reasonable conditions for magnesium phosphate formation and no influence of added Ca on the linearity of log SAC vs. P(added) plots. However Ca levels corresponding to I.S. around 0.028 produced a considerable drop on the values of SAC when bobierrite was taken as reference.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soil and Water Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.