• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Numerical solutions of lattice quantum fields with a hierarchy of Schroedinger-like equations.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9111950_sip1_c.pdf
    Size:
    8.163Mb
    Format:
    PDF
    Download
    Author
    Ludwig, Mark Allen.
    Issue Date
    1990
    Keywords
    Mathematics
    Physics.
    Advisor
    Morse, R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Systems of quantized fields can be described by an infinite hierarchy of coupled equations. Such a hierarchy is derived from first principles for a simple interacting field theory to illustrate this type of a representation. The perturbation series for the S matrix is derived from the hierarchy equations in order to show its equivalence to the usual expansion in Feynman amplitudes. An inquiry is then conducted to determine whether this type of representation is useful for solving problems. Truncations of the hierarchy which predict simple bound states are examined in the weak coupling limit, and equations describing a hydrogen-like atom are obtained. Next, the numerical approximation of a truncated hierarchy is studied, and a scattering/particle creation process is modeled in one dimension with a resulting accuracy of 1 to 2 percent. Finally, the mathematical questions of convergence which arise in connection with quantized fields are discussed within the context of the hierarchy equations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.