• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Alkali-induced agglomeration of aluminosilicate particles during coal combustion and gasification.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9111963_sip1_c.pdf
    Size:
    9.760Mb
    Format:
    PDF
    Download
    Author
    Rizeq, Rizeq George.
    Issue Date
    1990
    Keywords
    Engineering.
    Advisor
    Shadman, Farhang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This study focuses on the effect of alkali adsorption on the agglomeration of particles of bauxite, kaolinite, emathlite, lime, and two types of coal ash. An agglomeration (adhesion) temperature is defined which characterizes the adhesion propensity of particles. Using a small fluidized bed, a unique experimental technique is developed to measure this agglomeration point in-situ. The effects of alkali adsorption on the agglomeration characteristics of the substrates are determined. The agglomeration temperature of all substrates decreases as the alkali content increases. At low alkali loadings, alkali adsorption enhances particle agglomeration by forming new compounds of lower melting points. At high alkali concentrations, adhesion and agglomeration are caused by a layer of molten alkali which covers the exterior of the particles. Alkali surface composition of particles is studied using a Scanning Auger Microprobe (SAM). Results indicate that the alkali surface concentration decreases as agglomeration temperature increases. SAM depth profiling data provides information on the variations of alkali loading across particles. These results show that an alkali surface product layer is formed where most of the alkali adsorbed is concentrated. The use of additives to scavenge alkali vapors is further studied in a pilot scale downflow combustor under more typical combustion conditions. SAM surface analyses of additive particles indicate three mechanisms of alkali capture. Alkali adsorption by reaction, alkali surface condensation, and alkali nucleation and coagulation with additive particles. These mechanisms may occur independently or simultaneously depending primarily on the alkali vapor concentration and the temperature profile along the combustion furnace. A mathematical model is developed to represent the kinetics and mechanisms of the alkali adsorption and agglomeration process. Modeling results indicate that the adsorption-reaction process is influenced by diffusion of alkali through the surface product layer. The model predictions of the alkali adsorbed as a function of minimum agglomeration temperature agree very well with the experimental results. Alkali-additive interactions in a downflow combustor are also modeled to predict the mechanisms of alkali capture and the overall alkali removal efficiency. Model predictions of the alkali capture agree well with the experimental results.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.