• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Percolation in half spaces and Markov fields on branching planes.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9111981_sip1_m.pdf
    Size:
    1.278Mb
    Format:
    PDF
    Description:
    azu_td_9111981_sip1_m.pdf
    Download
    Author
    Wu, Chuntao.
    Issue Date
    1990
    Keywords
    Mathematics
    Advisor
    Newman, Charles M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We study two sets of models: independent percolation models in half spaces Zᵈ⁻¹ x Z₊, and Ising/Potts models as well as the Fortuin-Kasteleyn (FK) random cluster models on branching planes T x Z, where Z is the one-dimensional lattice, Z₊ = {0,1,2,...} and T is a Bethe lattice. We prove that for independent percolation in half spaces, the infinite cluster is unique whenever it exists. For the Ising/Potts models on branching planes, there are (at least) two phase transitions; that is, there exist(s) a unique Gibbs state, tree-like nonunique Gibbs states or plane-like nonunique Gibbs states corresponding to high temperature, intermediate temperature or low temperature. In the low temperature plus phase, the plus infinite cluster is unique and it "traps" the space T x Z and prevents co-existence of the minus infinite cluster. For the FK random cluster models (which are dependent percolation models) on T x Z, the number of infinite (open) clusters may be zero, infinity or one depending on the value of p--the probability of each bond being open. This is an extension of Grimmett and Newman's results for independent percolation on T x Z. We also prove that both the independent percolation model and the FK random cluster models satisfy a finite island property when p is close to 1. Chapter 1 is an introduction. Chapter 2 contains the proof of the uniqueness theorem for independent percolation in half spaces. The proof utilizes only a large deviation estimate and translation invariance of the models along the hyperplane Zᵈ⁻¹ x {0}. The Ising/Potts models and the FK random cluster models on the branching planes are studied in Chapter 3. The methods are to use the FK representation of Ising/Potts systems as dependent percolation models to carry over Grimmett and Newman's results for independent percolation to the Ising/Potts models. However, in order to prove the plane-like behavior of the Ising/Potts models, the corresponding results for independent percolation are not sufficient and this led us to investigate independent percolation again and prove a new finite island property. Chapters 2 and 3 are independent. Readers with basic knowledge of percolation and Ising models can omit chapter 1 and read chapters 2 and 3 directly.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.