Show simple item record

dc.contributor.advisorWolfe, Billen_US
dc.contributor.authorLundgren, Mark Andrew.
dc.creatorLundgren, Mark Andrew.en_US
dc.date.accessioned2011-10-31T17:34:05Z
dc.date.available2011-10-31T17:34:05Z
dc.date.issued1990en_US
dc.identifier.urihttp://hdl.handle.net/10150/185313
dc.description.abstractOptical component alignment and testing using reverse optimization has been investigated for different measurement methods and optical systems. The methods discussed were ray aberration measurement and wavefront aberration measurement. The methods were applied to real and simulated optical systems and compared. A testbed was designed to measure ray aberrations by means of physical raytracing of a three-mirror telescope in order to align the telescope by means of ray aberration measurement and reverse optimization, a technique of computer aided alignment. Ray aberration measurements were used to align the three-mirror telescope. Experimental results and improvements to the technique are discussed. Wavefront aberration methods are described and compared to ray aberration measurements. The wavefront aberration method was more easily used with systems with low nominal aberrations and when figure testing is desired. The ray aberration technique is most useful with systems of large aberration when capture range may be a problem and when component figure is well known. The method of reverse optimization is shown to work for wavefront aberration measurements in computer simulations using a Cassegrainian telescope, Cooke triplet and afocal two-Petzval telescope. Component figure errors and misalignments were determined simultaneously with sufficient spatial sampling of the wavefront aberrations. Surface parameters and component alignments were used as optimization variables. The effects of gaussian noise on the wavefront data were simulated for misalignment of the two-Petzval design. Results showed that noise can be compensated by the use of large numbers of optimization targets. Wavefront aberration measurements and reverse optimization were used to align a laboratory two-Petzval system to verify the results of the simulations.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysicsen_US
dc.titleSimultaneous alignment and figure testing of optical system components via aberration measurement and reverse optimization.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc710843975en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberLawrence, Georgeen_US
dc.contributor.committeememberMilster, Tomen_US
dc.identifier.proquest9114062en_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-23T02:43:46Z
html.description.abstractOptical component alignment and testing using reverse optimization has been investigated for different measurement methods and optical systems. The methods discussed were ray aberration measurement and wavefront aberration measurement. The methods were applied to real and simulated optical systems and compared. A testbed was designed to measure ray aberrations by means of physical raytracing of a three-mirror telescope in order to align the telescope by means of ray aberration measurement and reverse optimization, a technique of computer aided alignment. Ray aberration measurements were used to align the three-mirror telescope. Experimental results and improvements to the technique are discussed. Wavefront aberration methods are described and compared to ray aberration measurements. The wavefront aberration method was more easily used with systems with low nominal aberrations and when figure testing is desired. The ray aberration technique is most useful with systems of large aberration when capture range may be a problem and when component figure is well known. The method of reverse optimization is shown to work for wavefront aberration measurements in computer simulations using a Cassegrainian telescope, Cooke triplet and afocal two-Petzval telescope. Component figure errors and misalignments were determined simultaneously with sufficient spatial sampling of the wavefront aberrations. Surface parameters and component alignments were used as optimization variables. The effects of gaussian noise on the wavefront data were simulated for misalignment of the two-Petzval design. Results showed that noise can be compensated by the use of large numbers of optimization targets. Wavefront aberration measurements and reverse optimization were used to align a laboratory two-Petzval system to verify the results of the simulations.


Files in this item

Thumbnail
Name:
azu_td_9114062_sip1_m.pdf
Size:
2.303Mb
Format:
PDF
Description:
azu_td_9114062_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record