• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Geomorphic analyses of young faulting and fault behavior in central Nevada.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9117465_sip1_c.pdf
    Size:
    17.17Mb
    Format:
    PDF
    Download
    Author
    Pearthree, Philip Arnim.
    Issue Date
    1990
    Keywords
    Geology -- Nevada -- Great Britain
    Geology, Structural -- Nevada
    Faults (Geology) -- Nevada.
    Advisor
    Wallace, Terry C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation research assesses the behavior of young faults in central Nevada through analyses of landforms associated with these faults. Four large earthquakes have occurred since 1915 in a striking N-S belt in central Nevada; no comparable earthquakes have occurred elsewhere in the Great Basin. The frequency of large-earthquake occurrence, and temporal and spatial patterns and rates of faulting in central Nevada during the Holocene were assessed through geomorphic and geologic studies of young fault scarps. Ages of paleoseismic events were estimated primarily through analyses of fault scarp morphologies and characterization and quantification of soil development associated with alluvial surfaces. Rates of fault scarp degradation were explored through diffusion-based modeling of latest Pleistocene pluvial shoreline scarps. Morphologic scarp age depends strongly on scarp size; modest variations in local climate, particle size, and aspect are less important. Incorporating a factor that depends on scarp size almost always decreases the scatter in scarp age estimates, and is critical if only small scarps exist along a fault zone. An average of ±30% uncertainty about the mean scarp age estimate remains after these analyses. Soil development indices were calibrated using 14 Holocene to latest Pleistocene soil profiles in central Nevada whose maximum ages are constrained. Soil development indices were used to estimate ages of faulted and unfaulted alluvial surfaces along fault scarps. Soils and morphologic fault scarp age estimates for paleoseismic events are generally consistent. Temporal and spatial patterns and rates of faulting during the Holocene were evaluated using age estimates for paleoseismic events. The long-term rate of faulting is about 10 times lower than the historical rate. There were no other N-S belts of faulting during the Holocene, although scarp ages suggest that there may have been other temporal clusters of faulting. There have been spatial clusters of faulting during portions of the Holocene. The extensional deformation rate across central Nevada during the Holocene is about 0.5-0.75 mm/yr. Integrating this rate with fault-slip data from other portions of the northern Great Basin, the Holocene extensional deformation rate is 3.5-6.5 mm/yr, substantially lower than the historical deformation rate.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.