Ultrafast optical nonlinearities in aluminum phthalocyanine organic thin films and a picosecond all-optical organic etalon switch.
Name:
azu_td_9124164_sip1_m.pdf
Size:
2.557Mb
Format:
PDF
Description:
azu_td_9124164_sip1_m.pdf
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The history of femtosecond laser pulse generation is summarized and a current state-of-the-art femtosecond laser system described. The femtosecond pulses are used to observe coherent coupling effects in a fluoro-aluminum phthalocyanine thin film. The polarization dependency of the coherent coupling indicates that orthogonal polarization states in the phthalocyanine ring are effectively uncoupled. The coherent coupling effect evolves into a nonequilibrium exciton population spectrally coincident with the pump pulse. This population rapidly decays to the bottom of the π- π* absorption band. These singlet excitons exhibit rapid bimolecular decay characteristics. In addition, some singlet excitons relax into the triplet manifold by intersystem crossing. Excited-state triplet-triplet absorption is then observed. The triplet excitons relax to the ground state, apparently via nonradiative decay mechanisms. Femtosecond techniques are also employed to demonstrate a picosecond all-optical organic NOR gate. A dye-doped polymer is used as the nonlinear material inside a Fabry-Perot etalon.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Optical SciencesGraduate College