• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Preparation and characterization of immunochemical reagents for bioanalytical applications.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9124165_sip1_m.pdf
    Size:
    2.898Mb
    Format:
    PDF
    Description:
    azu_td_9124165_sip1_m.pdf
    Download
    Author
    Wimalasena, Rohan Lalith.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Immunology.
    Advisor
    Wilson, George S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Immunological reagents were prepared and characterized for the development of analytical methodology in bioanalytical research. Monoclonal antibodies to glucose oxidase (E.C. 1.1.3.4) from Aspergillus niger were prepared with apoenzyme as the antigen. Five of these antibodies, all of the IgG, subisotype, were further characterized. The carbohydrate moiety of the enzyme is not immunogenic. Binding of the five antibodies to the enzyme had no detectable effect on its catalytic properties. All the antibodies are shown to be directed towards segmental epitopes of the enzyme, not involving the carbohydrate moiety. Each enzyme subunit has more than one non-overlapping epitope. All five antibodies bound enzyme in a non-native conformation when coated on ELISA plates in preference to the native solution conformation. The importance of having a solution phase screening procedure for monoclonal antibodies is demonstrated. Factors affecting the specific activity of immobilized antibodies and their biologically active fragments were studied with goat anti-mouse and goat anti-human IgG. Antibodies were immobilized on HW 65 polymeric support matrix activated with carbonyldiimidazole, hydrazide and iodoacetic acid. The most significant factors influencing the specific activity of stochastic coupling of antibodies are multisite attachment, multiple orientations, and steric hindrance imposed by crowding of antibody and the size of the antigen. With oriented immobilization the specific activity is affected only by steric hindrance. The specific activity of immunosorbents prepared by immobilization of F(ab') fragments can be improved to almost 100% by limiting the amount of protein immobilization and the size of the antigen. The present study shows the protocols for optimizing immobilized antibody performance. Preparation of fragments of immunoglobulin were studied. Within the same species different antibodies showed different sensitivities to proteolytic cleavage by pepsin. A rapid, simple, high performance size exclusion chromatographic method was developed to monitor the reaction progress. Conditions must be optimized for each antibody in the preparation of F(ab')₂. Preparation of F(ab') from F(ab')₂ shows that 10-15% of goat anti-mouse F(ab')₂ was resistant to reduction. The procedure causes reduction of disulfide bonds other than the inter-heavy chain disulfide bonds.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.