• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-resolution Fourier transform infrared spectroscopy of high-temperature molecules and free radicals.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9125447_sip1_c.pdf
    Size:
    15.41Mb
    Format:
    PDF
    Download
    Author
    Frum, Coriolan Ioan.
    Issue Date
    1991
    Keywords
    Chemistry, Physical and theoretical.
    Advisor
    Bernath, P.F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High resolution absorption spectra of the IF molecule in the X¹Σ⁺ ground state were observed with the Kitt Peak Fourier transform spectrometer in a F₂/I₂ flame. Iodine fluoride is the most unstable interhalogen compound. Accurate wavenumber measurements (±0.0002 cm⁻¹) were made for the 1-0, 2-1 and 2-0 bands and molecular constants were derived. The observation of a high resolution emission spectrum at 13 μm (750 cm⁻¹) is unusual. Seven bands (1-0 through 7-6) of the main isotopic form, ²⁸Si³²S, were observed along with three bands (1-0, 2-1 and 3-2) for each of the minor species, ²⁹Si³²S, ³⁰Si³²S and ²⁸Si³⁴S. More than 2450 lines were fitted for this important astrophysical molecule. Dunham coefficients were obtained for each isotopomer of SiS. Mass-reduced Dunham parameters, including Watson's correction due to the breakdown of the Born-Oppenheimer approximation, were also derived from the data. The first high resolution spectrum of a metal dihalides was recorded by infrared emission spectroscopy. The infrared emission spectrum of BeF₂ was observed in the region of the antisymmetric stretching mode, ν₃, and the combination band, ν₁ + ν₂. Eight vibration-rotation bands were rotationally analyzed and the spectroscopic constants are reported. The equilibrium beryllium fluoride bond distance (rₑ) was found to be 1.3729710(95)Å in BeF₂. Values of the vibrational frequencies of all the three normal modes were obtained from the spectra. The gas phase infrared spectrum of C₆₀ (buckminsterfullerine) has been observed in emission with the National Solar Observatory Fourier transform spectrometer at Kitt Peak. Bands attributable to the C₆₀ molecule are found at 527.1 cm⁻¹, 570.3 cm⁻¹, 1169.1 cm⁻¹ and 1406.9 cm⁻¹. Additional emission features are tentatively assigned to C₇₀ or combination bands of C₆₀. A new, strong emission is observed at 1010.2 cm⁻¹ belonging to an unknown molecule. A new electronic state of ³Π symmetry of PtO has been observed between 7100 cm⁻¹ and 8015 cm⁻¹ above the ground state. This new state was observed through an electronic transition to the ³Σ⁻ ground state of this free radical. Three independent electronic systems connecting the Ω = 0,1 and 2 spin components in the upper state to Ω = 1 component in the ground state have been recorded in emission with the Fourier transform spectrometer associated with the McMath Solar Telescope at Kitt Peak. (Abstract shortened with permission of author.)
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.