We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorPemberton, Jeanneen_US
dc.contributor.authorSobocinski, Raymond Louis.
dc.creatorSobocinski, Raymond Louis.en_US
dc.date.accessioned2011-10-31T17:38:53Z
dc.date.available2011-10-31T17:38:53Z
dc.date.issued1991en_US
dc.identifier.urihttp://hdl.handle.net/10150/185476
dc.description.abstractThe overall goal of this research is to characterize the potential-dependent structure and composition of the alcohol-Ag electrochemical interface. The approach involves the use of a variety of electrochemical and spectroscopic tools to arrive at a consistent model for a series of straight-chain alcohols (methanol, ethanol, 1-propanol, and 1-pentanol) at Ag electrodes. There are essentially four areas of investigation presented in this dissertation. The first portion of this work has been directed at the development of charge coupled device detection in Raman spectroscopy so that many of the interface investigations could be performed. The advantages and limitations of these detectors in Raman spectroscopy are addressed. The second area involves the characterization of in-situ alcohol-Ag electrochemical interfaces using Raman spectroscopy and associated surface selection rules for the evaluation of solvent orientation and bonding. Since the series of alcohols offers a systematic variation in solvent properties, these studies provide substantial insight regarding some of the chemical interactions which can dictate orientation. The development of emersed electrode technologies is also presented as a means to improve selectivity for surface molecular species over bulk molecular species. The utility of this approach is demonstrated for a variety of straight-chain alcohols at both rough and smooth Ag electrodes. Conditions for emersing the molecular interface, intact, under potential control are presented. Finally, double layer capacitance measurements are performed to offer additional insight regarding alcohol solvent structure and interfacial composition as a function of electrode potential. In addition, capacitance-potential plots are used along with the Hurwitz-Parsons analysis to determine absolute surface coverage of Br⁻ as a function of electrode potential. These results are correlated with the Raman spectroscopic results to obtain a consistent model for the structure and composition of the alcohol-Ag electrochemical interface.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectDissertations, Academicen_US
dc.subjectElectrochemical analysisen_US
dc.subjectChemistry, Analytic -- Quantitative.en_US
dc.titleElectrochemical and Raman spectroscopic investigations of in situ and emersed silver-alcohol electrochemical interfacesen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc710442439en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberBurke, Michael F.en_US
dc.contributor.committeememberWigley, David E.
dc.identifier.proquest9125454en_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file August 2023.
refterms.dateFOA2018-05-29T00:33:50Z
html.description.abstractThe overall goal of this research is to characterize the potential-dependent structure and composition of the alcohol-Ag electrochemical interface. The approach involves the use of a variety of electrochemical and spectroscopic tools to arrive at a consistent model for a series of straight-chain alcohols (methanol, ethanol, 1-propanol, and 1-pentanol) at Ag electrodes. There are essentially four areas of investigation presented in this dissertation. The first portion of this work has been directed at the development of charge coupled device detection in Raman spectroscopy so that many of the interface investigations could be performed. The advantages and limitations of these detectors in Raman spectroscopy are addressed. The second area involves the characterization of in-situ alcohol-Ag electrochemical interfaces using Raman spectroscopy and associated surface selection rules for the evaluation of solvent orientation and bonding. Since the series of alcohols offers a systematic variation in solvent properties, these studies provide substantial insight regarding some of the chemical interactions which can dictate orientation. The development of emersed electrode technologies is also presented as a means to improve selectivity for surface molecular species over bulk molecular species. The utility of this approach is demonstrated for a variety of straight-chain alcohols at both rough and smooth Ag electrodes. Conditions for emersing the molecular interface, intact, under potential control are presented. Finally, double layer capacitance measurements are performed to offer additional insight regarding alcohol solvent structure and interfacial composition as a function of electrode potential. In addition, capacitance-potential plots are used along with the Hurwitz-Parsons analysis to determine absolute surface coverage of Br⁻ as a function of electrode potential. These results are correlated with the Raman spectroscopic results to obtain a consistent model for the structure and composition of the alcohol-Ag electrochemical interface.


Files in this item

Thumbnail
Name:
azu_td_9125454_sip1_c.pdf
Size:
9.865Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record