• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Biomedical applications of mass spectrometry.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9127707_sip1_m.pdf
    Size:
    5.014Mb
    Format:
    PDF
    Description:
    azu_td_9127707_sip1_m.pdf
    Download
    Author
    McClure, Thomas Dale.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Chemistry, Analytic
    Mass spectrometry.
    Advisor
    Schram, Karl H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The application of mass spectrometry to verification of the structure of 3-methyluridine (m³U) isolated by HPLC from normal human urine is described. m³U has been used as an internal standard for studies of urinary nucleosides, a practice that is discouraged with the confirmation of m³U as a naturally occurring compound. Mass spectrometry has been used for the identification of 5'-deoxyxanthosine (5'-dX) a novel nucleoside in normal human urine. Initial concern over availability of a reference sample of 5'-dX prompted investigations of the structure/fragmentation relationships of the TMS deratives of 2'-, 3'-, and 5'-deoxynucleosides toward differentiation between the three deoxynucleosides. Results are presented which allow discrimination between the model compounds, deoxyanalogs of adenosine. Subsequent to the deoxynucleoside fragmentation studies, a biosynthetically produced reference sample of 5'-dX became available for direct comparison of mass spectra and chromatographic retention times which, when combined with observations from the deoxynucleoside studies established the structure of 5'-dX. In response to the large number of mass spectra produced from the GC-MS analysis of a TMS derivatized urine sample, computer software has been written to aid in spectral analysis. Examples are shown in which the software uses established fragmentation rules to assign structure to ions in the mass spectrum and suggest modifications in the sugar portion of two urinary nucleosides. The structure/fragmentation relationships of the unique antitumor drug taxol has been studied by EI, CI and FAB mass spectrometry. Information is presented showing characteristic fragmentation of the side-chain and verification of functional groups attached to the taxane ring. Studies have been conducted to determine the relationship between target temperature and matrix and sample lifetime in the source of the mass spectrometer. Results are presented showing that cooling the target permits the use of matrix materials that are too volatile at ambient temperatures thus extending the range of compounds that can be studied by mass spectrometry. A recently constructed four-sector mass spectrometer is described with a detailed discussion of instrumental capabilities. Results of experiments designed to apply these capabilities to the structural analysis of TMS nucleosides using FAB ionization are discussed with an emphasis on the fragmentation unique to 4-sector daughter ion experiments compared with conventional studies and 2-sector daughter ion results.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmaceutical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.