• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Regulation of gene expression in Bacillus subtilis macrofiber by environmental physical stimuli.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9136835_sip1_c.pdf
    Size:
    12.28Mb
    Format:
    PDF
    Download
    Author
    Salhi, Bachira.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Genetic regulation
    Microbiology.
    Advisor
    Mendelson, Neil H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Extensive studies indicate that both genetic and epigenetic (physiological and biomechanical) factors play a role in the development of twist state which must correspond to the establishment of cell surface conformational state at the level of cell wall assembly. Therefore, in order to identify the unknown factors that control the macrofiber production, twist states and hand inversion, genetic studies concerning regulation of macrofiber production and macrofiber structural states seemed to be appropriate. Genetic studies were carried out by using an insertional mutagenesis method. Bank(s) of insertions were obtained that carry the Tn917 transposon at random locations in the genome. Selected isolates were characterized with respect to macrofiber production and twist, and helix hand inversion stimulated by various physiological factors. The bank(s) of insertional mutants were searched for those defective or impaired in response to ion-induced hand inversion. None were found to exhibit the desired phenotype. Clones with altered static state were not rare. Another approach was to take advantage of the transposon "lac system" and to use the bank of insertion mutants to study regulation of gene expression. The chromogenic substrate for β-galactosidase, X-gal, made possible the search for factors governing gene expression during macrofiber morphogenesis in a manner similar to the way in which developmental biologists study regulation of gene expression during embryogenesis. First, insertion strains were screened for lac-Z expression on TBAB (Tryptose Blood Agar Base) X-gal plates. Isolates were then characterized by growth in fluid media. One strain (3:1) was found that expressed the E. coli lac-Z structural gene when grown on solid media (TBAB X-gal), but not when grown in fluid media. These observations led us to an examination of the role the medium may play in the regulation of gene expression. Evidence was obtained indicating that a number of insertion strains respond to growth in viscous media by expression of lac-Z+ indicating that different host gene promoters can be regulated by a physical component of the environment. The degree of expression moreover was positively correlated with the degree of viscosity. Environmental physical forces applied to the "body" of a bacterial cell must therefore play a role in gene expression. In at least one strain, 5:7Oring, gene expression was found only in right-handed structures suggesting that either specific genes are involved in the twist state and hand determination or that helix hand itself may govern gene expression. Finally, the 5:7Oring strain shows also the presence of a probable intercellular signalling through a diffusible chemical that causes gene expression to occur only in certain cells found at specific locations within the population.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Microbiology and Immunology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.