• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    IDENTIFICATION OF THE ESCHERICHIA COLI LEXA PROTEIN AND REGULATION OF LEXA GENE EXPRESSION IN VIVO.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8311410_sip1_w.pdf
    Size:
    2.619Mb
    Format:
    PDF
    Download
    Author
    HARPER, JOAN ELIZABETH.
    Issue Date
    1983
    Keywords
    Escherichia coli -- Genetics.
    DNA repair.
    Advisor
    Mount, David
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The product of the Escherichia coli lexA gene has been identified, and the regulation of lexA gene expression in vivo has been examined. A series of specialized transducing phages carring lexA⁺ and 3 different amber lexA alleles was constructed by in vivo recombination between λlexA3 and host lexA alleles. These phages were characterized extensively to confirm that they carried the appropriate lexA allele. The lexA gene product was identified by comparison of the polypeptides encoded by λlexA3 and the amber lexA phages. A 24,000 dalton polypeptide, synthesized after infection of both amber-suppressor and non-suppressor hosts by λlexA3 was not synthesized following amber lexA phage infection of non-suppressor hosts. Synthesis of this polypeptide following amber lexA phage infection was restored by the presence of an amber suppressor mutation in the host. On the basis of these data, the 24,000 dalton polypeptide was identified as the lexA gene product. Regulation of lexA gene expression in vivo was examined by hybridization experiments to measure lexA mRNA levels. The basla level of lexA mRNA in wild type E. coli was found to be .006% of total mRNA. Treatment of the bacteria with 100 erglmm² ultraviolet irradiation (UV) led to an eight-fold increase in lexA mRNA levels within 10 minutes, the lexA mRNA remained elevated until 70 minutes after irradiation, then slowly declined. By comparison, the level of recA mRNA increased from .05% to .51% of total mRNA within 10 minutes following UV irradiation, then declined. Both lexA and recA genes were induced by nalidixic acid treatment; the induction was not as rapid as UV induction and different relative induction kinetics of the two genes were seen. The levels of lexA and recA mRNAS were measured in several mutant strains following UV-irradiation.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Medical Microbiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.