• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Isotopic and geochemical characteristics of Laramide igneous rocks in Arizona.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9200049_sip1_m.pdf
    Size:
    6.209Mb
    Format:
    PDF
    Description:
    azu_td_9200049_sip1_m.pdf
    Download
    Author
    Lang, James Robert.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Geology
    Geochemistry.
    Advisor
    Titley, Spencer R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Isotopic and trace element data on igneous rocks in nine multiphase magmatic complexes of Laramide age in Arizona place constraints on their petrogenesis and on the factors leading to the formation of porphyry copper deposits. The igneous rocks form a data array from ∊Nd(T) and Srₒ values of 0 and 0.704, to -14 and >0.710, respectively. Isotopic compositions indicate that early, intermediate volcanic rocks retained a mantle component whereas later intrusions were derived predominantly from Precambrian lower crust. The REE display temporally systematic behavior. Progressively younger igneous rocks in a district show a decreasing concentration of REE which is more pronounced for the HREE than for the LREE; they acquire greater upward concavity in their HREE profiles; and the Eu anomaly steadily becomes less negative. An increasing role for hornblende is indicated, either in the residuum of melting or as a fractionating phase. The evolving REE and isotopic behavior parallels the progression from barren, to subproductive, to productive intrusions. The geochemical behavior can be understood in the broader context of magmagenesis at the Laramide convergent margin. Early in the Laramide, the crust was cool and brittle, thereby allowing magmas formed in the mantle wedge as a consequence of volatile loss from the descending slab to ascend to high crustal levels. As the crust warmed the ascent of mantle-derived magmas was arrested in the lower crust where they induced anatexis in Precambrian crust. Three related models can account for the systematic REE behavior, crustal anatexis, and the timing of Laramide metallogenesis: (1) metasomatism of the lower crust, (2) progressively greater assimilation of hydrous crust by mantle-derived melts, and (3) migration of the anatectic zone into more hydrous rocks at higher crustal levels. Each process would allow melting to continue in confined columns of crust as well as provide increasingly volatile-rich magmas that were necessary for melts to evolve fluids capable of forming large porphyry copper deposits. The ultimate ability of a melt to form a porphyry copper deposit may, therefore, depend on characteristics obtained either in its crustal source region or during its passage through the crust.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.