• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The electrical properties of contamination particle traps in a process plasma.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9202078_sip1_c.pdf
    Size:
    4.096Mb
    Format:
    PDF
    Download
    Author
    Geha, Sam George.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Electrical engineering.
    Advisor
    Carlile, Robert N.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Clouds of contamination particles suspended in process plasma have been observed by several workers. This dissertation reports on the electrical properties of such clouds (referred to as Electrostatic Particle Traps or EPT) in an argon sputter plasma using a silicon wafer placed upon a graphite substrate. Particle traps were illuminated using a specially adopted laser scanning technique. A tuned Langmuir probe was then inserted into the region of the trap and used to map several parameters including the time-averaged plasma potential. The trap was found to be as much as 5 volts higher in plasma potential than the surrounding plasma. Elementary electrostatics dictates that the trap is a region of net positive charge with an electric field being directed outward from the trap. Thus, negatively charged particles will flow into the trap. It was also found that the electrical properties of contamination particle traps are highly dependent upon the topography of the target and the materials used, with different results being obtained for each material combination. The Langmuir probe was also found to be an effective tool for mapping the interface between the plasma and the sheath to within 0.5 mm; the interface follows the topography on the wafer electrode.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.