• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large-scale structures and the spatial evolution of wakes behind axisymmetric bluff bodies.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9208047_sip1_m.pdf
    Size:
    3.316Mb
    Format:
    PDF
    Description:
    azu_td_9208047_sip1_m.pdf
    Download
    Author
    Cannon, Steven Cary.
    Issue Date
    1991
    Keywords
    Base flow (Aerodynamics).
    Advisor
    Champagne, F.H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The wakes behind a variety ofaxisymmenic bodies were investigated with flow visualization and hot-wire measurements. The main objective of this study was to correlate changes in the time-averaged features of the wake with changes in the characteristics of the coherent large-scale structure resulting from changing the solidity of the wake generator or by introducing periodic disturbances to force the wake. The use of an axisymmenic probe holder permitted instantaneous decomposition of the axialvelocity field into temporal and azimuthal Fourier modes. Increases in the body solidity resulted in nearly proportional increases in the size of the mean wake boundary. For the non-shedding (low body solidity) wakes, flow visualization shows that the amplitude of discernible large-scale structure is small in comparison to the wake diameter, and there is no evidence of a recirculation region. For the shedding wakes, flow visualization reveals large-scale structure with amplitude that is comparable in size to the wake diameter, and a recirculation region is observed that oscillates in axial extent Fourier analysis of velocity measurements discloses that the temporal scale of the coherent large-scale structure for a non-shedding wake decreases in value with downstream distance while the corresponding scale for a shedding wake is constant Significant changes in the both the time-averaged features of the wake and in the large-scale structure usually occurred only when the forcing frequency was near the natural shedding frequency (within ± 25%). Those time-averaged features changed by forcing include the drag, the mean- and variance-profile shapes, and the size of the wake. The mean profile was observed to change from a regular shape to that which resembles a variance profile. Forcing results in a number of peaks being present in 2-D spectra plots, most of which are the result of non-linear interactions of the forcing wave with the natural shedding frequency. The flow visualization reveals that those peaks which are harmonics or subharmonics of the forcing frequency may be more prominent than the forcing frequency if they are closer to the natural shedding frequency of the unforced wake.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.