• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exact and approximation algorithms for DNA sequence reconstruction.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9210281_sip1_m.pdf
    Size:
    6.082Mb
    Format:
    PDF
    Description:
    azu_td_9210281_sip1_m.pdf
    Download
    Author
    Kececioglu, John Dimitri.
    Issue Date
    1991
    Keywords
    DNA -- Computer programs.
    Advisor
    Myers, Eugene W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The DNA sequence in every human being is a text of three billion characters from a four letter alphabet; determining this sequence is a major project in molecular biology. The fundamental task biologists face is to reconstruct a long sequence given short fragments from unknown locations. These fragments contain errors, and may represent the sequence on one strand of the double-helix, or the reverse complement sequence on the other strand. The Sequence Reconstruction Problem is, given a collection F of fragment sequences and an error rate 0 ≤ ε < 1, find a shortest sequence S such that every fragment F ∈ F, or its reverse complement, matches a substring of S with at most ε|F| errors. Sequence Reconstruction is NP-complete. We decompose the problem into (1) constructing a graph of approximate overlaps between pairs of fragments, (2) selecting a set of overlaps of maximum total weight that induce a consistent layout of the fragments, (3) merging the overlaps into a multiple sequence alignment and voting on a consensus. A solution to (1) through (3) yields a reconstructed sequence feasible at error rate 2ε/(1-ε) and at most a factor 1/1-ε longer than the shortest reconstruction, given some assumptions on fragment error. We define a measure of the overlap in a reconstruction, show that maximizing the overlap minimizes the length, and that approximating (2) within a factor of α approximates Sequence Reconstruction within a factor of (1- ε)α under the overlap measure. We construct the overlap graph for (1) in O(εN²) time given fragments of total length N at error rate ε. We develop two exact and two approximation algorithms for (2). Our best exact algorithm computes an optimal layout for a graph of E overlaps and V fragments in O(K(E + V log V)) time, where K ≤ 2ᴱ is the size of the branch-and-bound search tree. Our best approximation algorithm computes a layout with overlap at least 1/2 the maximum in O(V(E + V log V)log V) time. This is the first treatment of Sequence Reconstruction with inexact data and unknown complementarity.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Computer Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.