• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Age-related differences in human total body water relative to fat-free body mass.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9210292_sip1_w.pdf
    Size:
    5.514Mb
    Format:
    PDF
    Download
    Author
    Hewitt, Michael John.
    Issue Date
    1991
    Keywords
    Body composition
    Adipose tissues.
    Advisor
    Lohman, Timothy G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The objective of this investigation was to identify the appropriate isotopic fractionation factor for total body water (TBW) from ²H₂O enrichment in respiratory water vapor (RW) compared to serum (S), then to use the RW technique to estimate absolute TBW volumes and TBW relative to fat-free body mass (FFB) in three age groups (prepubescent, PP, age = 5-10 y; young adult, YA, age = 22-39 y; older adult, OA age = 65-84 y) of healthy white males and females. The effects of analytical technique (infrared spectrophotometry, IR versus isotope-ratio mass spectrometry, IRMS) and ambient relative humidity on estimates of TBW were also investigated. The composition of the FFB was estimated using a multi-component statistical model (body density, TBW and bone mineral density), and the errors associated with the traditional two-component formula for percent fat from body density were calculated. Our results demonstrated a significant (p < 0.0001) ²H₂O fractionation effect of 0.971 ± 0.005 (mean ± SEM, n = 36) for TBW from RW compared to S. Analysis by IR and IRMS were highly correlated (R² =.999) but IR values were significantly (p < 0.001) higher than IRMS. Deuterium enrichment in RW samples collected at ambient RH (∼20%) was significantly higher (Δ = 20.2 ± 4.5 ppm, mean ± SEM, p < 0.0005) than in RW samples collected at 100% RH, roughly equivalent to a 1.2 L (3.2%) difference in TBW. Total body water relative to FFB mass (W/FFB) was lower (p < 0.01) in YA males (71.0 ± 1.0%) and females (70.2 ± 1.3%) than in PP (boys = 73.1 ± 1.6%; girls = 72.2 ± 1.4%, mean ± SD). In OA, W/FFB was higher (p < 0.05) than in YA (OAM = 72.6 ± 1.1%; OAF = 72.2 ± 1.4%). The density of the FFB was 1.0996 and 1.0839 g/ml in OAM and OAF, respectively. Percent fat from density plus TBW and BMD was lower than from density alone in all groups but YA males, where it was 2.4 percent fat higher. In PP, the Siri density formula resulted in an overestimate of 5.8 ± 2.6 percent fat (mean ± SD, range = 1.4 to 13.6%). In OA females, the density formula overestimated percent fat by 4.4 ± 2.8% (range = 0 to 10.4%). In conclusion, RW corrected for isotopic fractionation will provide acceptable estimates of TBW, although the effects of analytical technique and RH should be controlled. The existence of age-related differences in FFB composition causes errors when the two-component model is used to estimate percent fat in PP and OA females.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Animal Physiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.