• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Monte Carlo simulation of ground water remediation at a Nebraska contamination site.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9210312_sip1_c.pdf
    Size:
    6.100Mb
    Format:
    PDF
    Download
    Author
    Elmore, Andrew Curtis.
    Issue Date
    1991
    Keywords
    Dissertations, Academic
    Civil engineering.
    Advisor
    Contractor, Dinshaw N.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Characterization of the effectiveness of ground water contamination remediation alternatives is complex due to uncertainties associated with the ground water system. This dissertation presents a Monte Carlo simulation model for stochastic characterization of the maximum concentration of contaminant remaining in an aquifer after the application of pump and treat remedial alternatives. The model is written in FORTRAN 77 for the Convex 240. The model uses a publicly available finite difference code for flow analysis and a commercially available method of characteristics transport code. Hydraulic conductivity fields are randomly generated using the turning bands method; initial concentration fields are conditionally simulated on measured and estimated concentration values; and retardation coefficient fields are negatively correlated to hydraulic conductivity using partition coefficients sampled from a log normal distribution. The model was applied to three pump and treat alternatives selected for consideration at a Nebraska contamination site. Two dimensional analysis of flow and transport was performed. Special treatment of flow boundary conditions was necessary due to site conditions and model restrictions. The probabilistic analyses of the resulting maximum concentration ensembles were used to demonstrate decision analysis at the site. Beta probability distributions were fitted to the maximum output ensembles. The decision tree model incorporated monetary values, human health considerations, and regulatory issues as well as probabilistic considerations. Illustration of the decision analysis procedure showed that the choice of the optimal remedial alternative was dependent on the monetary value assigned to noncarcinogenic and carcinogenic adverse human health risks.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.