• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The theory and numerical simulation of non-local mixing-length convection.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9225182_sip1_m.pdf
    Size:
    9.175Mb
    Format:
    PDF
    Description:
    azu_td_9225182_sip1_m.pdf
    Download
    Author
    Grossman, Scott Alan
    Issue Date
    1992
    Keywords
    Convection (Astrophysics)
    Advisor
    Narayan, Ramesh
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Local convection theory makes the unphysical prediction that turbulent mixing terminates at the Schwarzschild stability boundary, and existing non-local convection theories have been criticized by Renzini (1987). Since the size of convecting cores bears upon stellar structure and evolution, a self-consistent treatment of non-local convection is needed. We have developed a theory of non-local mixing-length convection based upon a Boltzman transport theory for subsonic, turbulent fluid elements. The momentum and thermal energy excesses of fluid elements are dissipated on the scale of a mixing length. The distribution function, f(t,z,v,T), which is the mass density per velocity-temperature phase space volume, evolves according to the Boltzmann equation. The minimal non-local theory is obtained by taking moments of the Boltzmann equation, up to third order. The local limit of the moment equations reduces to standard mixing-length theory. We extend this moment method to local convection in a composition stratified fluid by considering the evolution of the distribution function, f(t,z,v,T,μ), in velocity-temperature-molecular weight phase space. The stability criteria for convection, semiconvection, and salt-finger instability are derived. To determine closure approximations and evaluate the validity of the moment theory, we have developed an algorithm called Generalized Smooth Particle Hydrodynamics (GSPH) that numerically simulates convection. The vertical structure of the background fluid is calculated by SPH averaging of particles on a grid. Forces on particles are calculated from the background grid and from the local deviations between particles and grid. Particles move vertically only, but the local deviation forces, which account for turbulent losses of momentum and energy, arise from horizontal interactions. GSPH simulations show that the fourth moments are approximately proportional to squares of the second moments in unstable regions, with a proportionality constant between 2 and 4. With this closure approximation, we show that solutions of the moment equations agree well with GSPH results. The closure relations lead to nearly correct second moments, even in overshooting regions where the closure approximations are poor. GSPH simulations of convective overshooting in plane parallel and spherical geometry typically give overshooting distances in the range dₒᵥₑᵣ ≈ 1 - 2ℓ(M). We discuss improvements that we would like to make to the GSPH code and to the analytic work to obtain more precise answers that are directly relevant to realistic stars.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.