• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interactive graph layout: The exploration of large graphs.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9225193_sip1_m.pdf
    Size:
    3.880Mb
    Format:
    PDF
    Description:
    azu_td_9225193_sip1_m.pdf
    Download
    Author
    Henry, Tyson Rombauer.
    Issue Date
    1992
    Keywords
    Computer science.
    Advisor
    Hudson, Scott
    Schlichting, Richard
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Directed and undirected graphs provide a natural notation for describing many fundamental structures of computer science. Unfortunately graphs are hard to draw in an easy to read fashion. Traditional graph layout algorithms have focused on creating good layouts for the entire graph. This approach works well with smaller graphs, but often cannot produce readable layouts for large graphs. This dissertation presents a novel methodology for viewing large graphs. The basic concept is to allow the user to interactively navigate through large graphs, learning about them in appropriately small and concise pieces. The motivation of this approach is that large graphs contain too much information to be conveyed by a single canonical layout. For a user to be able to understand the data encoded in the graph she must be able to carve up the graph into manageable pieces and then create custom layouts that match her current interests. An architecture is presented that supports graph exploration. It contains three new concepts for supporting interactive graph layout: interactive decomposition of large graphs, end-user specified layout algorithms, and parameterized layout algorithms. The mechanism for creating custom layout algorithms provides the non-programming end-user with the power to create custom layouts that are well suited for the graph at hand. New layout algorithms are created by combining existing algorithms in a hierarchical structure. This method allows the user to create layouts that accurately reflect the current data set and her current interests. In order to explore a large graph, the user must be able to break the graph into small, more manageable pieces. A methodology is presented that allows the user to apply graph traversal algorithms to large graphs to carve out reasonably sized pieces. Graph traversal algorithms can be combined using a visual programming language. This provides the user with the control to select subgraphs that are of particular interest to her. The ability to Parameterize layout algorithms provides the user with control over the layout process. The user can customize the generated layout by changing parameters to the layout algorithm. Layout algorithm parameterization is placed into an interactive framework that allows the user to iteratively fine tune the generated layout. As a proof of concept, examples are drawn from a working prototype that incorporates this methodology.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Computer Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.