Development and image quality assessment of a contrast-enhancement algorithm for display of digital chest radiographs.
Author
Rehm, Kelly.Issue Date
1992Keywords
Dissertations, Academic.Radiography -- Image quality.
Radiography, Medical -- Digital techniques.
Radiology.
Advisor
Dallas, William J.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
This dissertation presents a contrast-enhancement algorithm called Artifact-Suppressed Adaptive Histogram Equalization (ASAHE). This algorithm was developed as part of a larger effort to replace the film radiographs currently used in radiology departments with digital images. Among the expected benefits of digital radiology are improved image management and greater diagnostic accuracy. Film radiographs record X-ray transmission data at high spatial resolution, and a wide dynamic range of signal. Current digital radiography systems record an image at reduced spatial resolution and with coarse sampling of the available dynamic range. These reductions have a negative impact on diagnostic accuracy. The contrast-enhancement algorithm presented in this dissertation is designed to boost diagnostic accuracy of radiologists using digital images. The ASAHE algorithm is an extension of an earlier technique called Adaptive Histogram Equalization (AHE). The AHE algorithm is unsuitable for chest radiographs because it over-enhances noise, and introduces boundary artifacts. The modifications incorporated in ASAHE suppress the artifacts and allow processing of chest radiographs. This dissertation describes the psychophysical methods used to evaluate the effects of processing algorithms on human observer performance. An experiment conducted with anthropomorphic phantoms and simulated nodules showed the ASAHE algorithm to be superior for human detection of nodules when compared to a computed radiography system's algorithm that is in current use. An experiment conducted using clinical images demonstrating pneumothoraces (partial lung collapse) indicated no difference in human observer accuracy when ASAHE images were compared to computed radiography images, but greater ease of diagnosis when ASAHE images were used. These results provide evidence to suggest that Artifact-Suppressed Adaptive Histogram Equalization can be effective in increasing diagnostic accuracy and efficiency.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Optical SciencesGraduate College