• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The major chloroplast low molecular weight heat shock protein.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9229844_sip1_c.pdf
    Size:
    10.30Mb
    Format:
    PDF
    Download
    Author
    Chen, Qiang.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Chloroplasts -- Formation -- Regulation.
    Chloroplasts.
    Molecular biology.
    Advisor
    Vierling, Elizabeth
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this dissertation is to provide information critical for understanding the function of the major chloroplast LMW HSP. The results of this research show that the production of a nuclear-encoded, chloroplast LMW HSP is a highly conserved event in the plant HS response, and that the HSP itself is highly homologous in divergent plant species. Three major conserved regions were identified in the chloroplast LMW HSP. The carboxyl-terminal HS domain of the chloroplast LMW HSP is also found in cytoplasmic LMW HSPs and identifies it as a member of the superfamily of eukaryotic LMW HSPs. The amino-terminal region is unique to the chloroplast LMW HSP and is capable of forming a Met-rich amphipathic α-helix. The chloroplast LMW HSP cannot be detected at normal growth temperatures, but accumulates dramatically in both leaves and roots during HS. The chloroplast LMW HSP is a stable protein with a half-life of approximately 52 h. In the chloroplast, the majority of PsHSP21 is localized in the soluble protein fraction. In its native state, PsHSP21 exists in a 200 kDa particle as is observed for cytoplasmic LMW HSPs. However, unlike the cytoplasmic LMW HSPs, the PsHSP21-containing particles do not aggregate into heat shock granules even under severe, abrupt HS conditions. The formation of the PsHPS21-containing particle can be replicated in isolated chloroplasts, but the chloroplasts must be from heat stressed plants. The protein sequence homology and the similar native structure of the LMW cytoplasmic and chloroplast HSPs suggests they perform similar functions in different cellular compartments. I propose that the 200 kDa particle is the functional form of PsHSP21. Furthermore, the chloroplast LMW HSP performs functions in all types of plastids similar to those of the cytoplasmic LMW HSPs, but with unique substrates within the special environment of plastids. This study provides the first information regarding the expression and structure of the chloroplast LMW HSP. Since the chloroplast contains only a single major LMW HSP, this study also provides the basis for developing a simple model system for studies of the function of all members of the ubiquitous LMW HSP family.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Biochemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.