• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling coupled heat and moisture flow within a bare desert soil.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9234879_sip1_m.pdf
    Size:
    3.954Mb
    Format:
    PDF
    Description:
    azu_td_9234879_sip1_m.pdf
    Download
    Author
    Khalifa, Hamdy Elhoussainy Mohammed.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Hydrology.
    Range management.
    Advisor
    Matthias, Allan D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Revegetation of semi-desert rangeland is dependent on rainfall, weather, and soil factors affecting seed germination and seedling establishment. To aid in predicting seed zone temperature and moisture following rainfall, a weather driven one-dimensional computer model was developed to simulate the simultaneous flow of heat and water within a bare semi-desert soil. The Newton-Raphson method was used to solve the surface energy budget equation for surface temperature. The coupled soil heat and water flow equations were then solved numerically using the weighted average finite-difference method to calculate the subsurface temperature (T(s)) and water content (θᵥ) profiles. Weather data and soil thermal and hydraulic properties were the only required inputs to the model. The model was tested using two data sets collected in the Altar Valley of Arizona during the summer rainy season of 1988. Data set 1, collected from calendar day (CD) 198 to 205, was used to calibrate the model. Calibration tests revealed that the model markedly underestimated T(s) when measured values exceeded 37°C. Underestimation of T(s) was found to be related to overestimation of latent heat flux. Therefore, the modelled latent heat flux was reduced as a linear function of air temperature (Tₐᵢᵣ) when Tₐᵢᵣ > 30°C. Also, soil thermal conductivity values predicted by the de Vries model had to be reduced 80% in order to achieve acceptable agreement between measured and modelled T(s). Data set 2, from CD 191 to 195, was then used to validate the calibrated (modified) model. Results obtained with data set 2 indicated that the modified model accurately simulated T(s) at 0.01 m depth even when the measured T(s) at that depth exceeded 50°C. Simulated T(s) values for the soil profile were generally within ± 3°C of the measured values. Results also showed good agreement between modelled and measured net radiation flux densities. In addition, the modified model predicted surface layer (0-0.03 m) moisture content remained wet enough for seed germination, i.e. θᵥ > 0.09 m³ m⁻³, about 24 to 36 hours longer than indicated by measured (resistance block) θᵥ values.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soil and Water Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.