• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Selective mass spectrometry by single-photon ionization from a molecular hydrogen laser source.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9234892_sip1_m.pdf
    Size:
    6.068Mb
    Format:
    PDF
    Description:
    azu_td_9234892_sip1_m.pdf
    Download
    Author
    Finch, Jeffrey William.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Chemistry, Analytic.
    Biomedical engineering.
    Advisor
    Denton, M.B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A molecular hydrogen laser, with an output of 7.8 eV photons in the vacuum ultraviolet, is evaluated as a selective source for photoionization mass spectrometry. Types of compounds ionized by the laser include a variety of amines, nitrogen heterocycles, drugs of abuse, pharmaceuticals, and polynuclear aromatic hydrocarbons (PAHS). The laser is coupled to a time-of-flight mass analyzer, which allows a spectrum to be recorded with each laser pulse. The laser is a "soft" ionization source and mass spectra of nearly all of the compounds studied yield single ion peaks due to the parent molecule with no fragments. This results in simplified mass spectra with a one-to-one correspondence of photoactive molecules with molecular ion peaks. Since the photoionization threshold of the laser is relatively low, selectivity of the photoactive species is high in the presence of a complex sample matrix. The performance of the laser source is improved with a few changes in the original design. In addition, the previous method of recording mass spectra with a photographic emulsion is replaced with a digital oscilloscope, which averages spectra over many laser pulses. As a result, a true assessment of the technique's sensitivity is finally achieved. The time-of-flight mass spectrometer is modified with a new microchannel plate ion detector and preamplifier. As a result, detection limits for PAH's improve by nearly three orders of magnitude, from the 100 ng range to the 100 pg range. Selectivity of the laser photoionization source in complex mixture analysis is demonstrated with the ability to detect PAH's in a drinking water sample at concentrations below 100 parts-per-trillion, using a simple solid-phase extraction technique. Application of the technique for rapid screening of drugs of abuse in urine is demonstrated where solid-phase extraction columns are utilized for sample pretreatment. Urine samples spiked with drugs such as cocaine, codeine, morphine, phencyclidine, and methadone, yield photoionization mass spectra consisting of parent molecular ions for the drugs with a few noninterfering ion signals from the matrix. The technique is evaluated and compared to other drug screening techniques such as enzyme-multiplied immunoassay.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.