• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fundamental studies of the deformability and strength of jointed rock masses at three dimensional level.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9238528_sip1_m.pdf
    Size:
    7.360Mb
    Format:
    PDF
    Description:
    azu_td_9238528_sip1_m.pdf
    Download
    Author
    Wang, Shuxin.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Environmental geotechnology.
    Civil engineering.
    Committee Chair
    Kulatilake, Pinnaduwa H.S.W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The deformability and strength properties of jointed rock masses are two of the fundamental parameters needed for the design and performance estimation of rock structures. Due to the presence of complicated minor discontinuity patterns (joints, bedding planes etc.), jointed rock masses show anisotropic and scale (size) dependent mechanical properties. At present, satisfactory procedures are not available to estimate anisotropic, scale dependent mechanical properties of jointed rock. Because of the statistical nature of joint geometry networks in rock masses, the joint patterns should be characterized statistically. The available joint geometry modeling schemes are reviewed. One of these schemes is used in this dissertation to generate actual joints in rock blocks. Three dimensional distinct element code (3DEC), which is used to perform stress analyses on jointed rock blocks in this study, is introduced and its shortcoming is identified. To overcome the shortcoming of 3DEC, a new technique is developed by introducing fictitious joints into rock blocks. Concerning the introduced fictitious joints, their geometry positions are mathematically determined; the representative mechanical properties for them found at 2D level are reviewed and verified at 3D level. By using the new technique, the deformation and strength properties of the rock blocks with many different joint configurations are found. Then effects of joint geometry parameters on the mechanical properties of jointed rock blocks are investigated. It is found that the joint geometry patterns have significant influences on the mechanical properties of rock blocks. All the joint geometry parameters are then integrated into fracture tensor. The relationships between the mechanical properties of jointed rock blocks and the fracture tensor parameters (its first invariant and directional component) are investigated. The possibility of obtaining the equivalent continuum behavior (REV properties) of jointed rock blocks is explored by using the aforementioned relationships. Finally, based on the research results, a new 3D constitutive model for jointed rock masses is developed to describe their pre-failure behavior. The constitutive model includes the effects of joints in terms of fracture tensor components and it shows the anisotropic and scale dependent natures of jointed rock masses.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mining and Geological Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.