• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Catastrophic collisions: Laboratory impact experiments, hydrocode simulations, and the scaling problem.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9307670_sip1_m.pdf
    Size:
    6.659Mb
    Format:
    PDF
    Description:
    azu_td_9307670_sip1_m.pdf
    Download
    Author
    Ryan, Eileen Valerie Cupta.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Geophysics.
    Astrophysics.
    Committee Chair
    Melosh, H.J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The catastrophic fragmentation of finite targets is examined both in the laboratory and using a numerical hydrocode. The objective of the empirical study was to gain some insight into the collisional process, specifically, how impact conditions affect collisional outcome. The hydrocode allows us to investigate the fragmentation of large bodies, and to determine how target size influences the impact event. Nearly 150 experiments were performed for this study. Impact velocities ranged from 50-5700 m/s; target material/structure as well as projectile type were varied, and the effect on fragment mass and velocity distributions was documented. Several factors were found to influence the result of a two-body collision: specific energy, momentum, target strength and internal structure, and projectile type. Velocity data showed that average fragment speeds are on the order of 10's of meters per second. Energy partitioned into ejecta kinetic energy is about 1-2% for high velocity collisions and more than 10% for low velocity impacts. Our two-dimensional hydrocode successfully reproduced fragment size distributions and mean ejecta velocities from laboratory impact experiments using basalt, and weak and strong mortar as target materials. It also reproduced size distributions from explosive disruption and applied external pressure experiments which used targets composed of weak mortar and weak basalt grout. Using this hydrocode, we analyzed how target size influences the amount of energy (Q*) required for fracture. Q* was found to decrease with increasing target size in the strength regime; in the gravity regime where incoming stress waves must overcome both material bonds and self-compression, Q* increased with increasing target size. The Q* dependence on target size was found to be much stronger than predicted from scaling law theory.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.