• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Twintrons: Introns-within-introns in the chloroplast genes of Euglena gracilis.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9309014_sip1_c.pdf
    Size:
    16.56Mb
    Format:
    PDF
    Download
    Author
    Copertino, Donald Woodward.
    Issue Date
    1992
    Keywords
    Dissertations, Academic.
    Molecular biology.
    Euglena gracilis.
    Committee Chair
    Hallick, Richard B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The chloroplast genes of Euglena gracilis contain more than 100 introns. A comparison of intron content and position among plastid and prokaryote genes has led to the hypothesis that introns have been inserted into chloroplast genes during evolution. Several Euglena loci contain unusual introns. These introns have been characterized by direct primer extension cDNA sequencing, cDNA cloning and sequencing, and northern hybridization. The psbF locus has a 1042 nt intron that appears to be one group II intron inserted into domain V of another group II intron. It was determined that a 618 nt internal intron is first excised from the 1042 nt intron, resulting in a partially spliced pre-mRNA containing a 424 nt group II intron with a spliced domain V. The 424 nt intron is then removed to yield the mature psbF mRNA. The term "twintron" was used to define this new genetic element. Splicing of the internal and external introns occurs via lariat intermediates. The splicing of the 409 nt intron of the rps3 gene was also examined. This intron is a "mixed" twintron, composed of a 311 nt group II intron internal to a 98 nt group III intron. The splicing of four additional introns with mean lengths twice typical group III introns, three within the rpoC1 gene and one within the rpl16 gene, was analyzed. The 1604 nt intron in the psbC gene, which encodes orf458, was also examined. These introns are group III twintrons. Orf458 is encoded within the internal group III intron of the psbC twintron. Splicing of internal introns in three of the five group III twintrons involves multiple 5'- and/or 3'-splice sites. Excised group III introns accumulate as lariat RNAs. Twintrons represent evidence for intron insertion during gene evolution. One possible mechanism for twintron formation is by intron transposition. The disruption of functional domains by internal introns may necessitate a sequential in vivo splicing pathway, requiring excision of internal introns prior to excision of external introns. The origins of alternative splicing and a possible evolutionary relationship between group II, group III and nuclear pre-mRNA introns are discussed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.