• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Image restoration for improved spectral unmixing.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9313014_sip1_m.pdf
    Size:
    4.703Mb
    Format:
    PDF
    Description:
    azu_td_9313014_sip1_m.pdf
    Download
    Author
    Wu, Hsien-Huang.
    Issue Date
    1992
    Keywords
    Engineering.
    Committee Chair
    Schowengerdt, Robert A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Because of the resolution limitations in remote sensing, the radiance recorded by the detector at each pixel is the integrated sum of the spectral radiance of all materials within the detector instantaneous-field-of-view (IFOV). If the detector IFOV covers more than one object class, the radiance detected is not characteristic of any single class but a mixture of all classes. These mixed pixels will have spectral signatures that fall within the convex hull formed by the signatures of all the classes. Traditional classifiers are therefore usually left with many misclassified or unclassified pixels. To remedy this problem, unmixing algorithms which decompose each pixel into a combination of several classes have been successfully applied to estimate the percentage of each class inside one pixel. In this dissertation, unmixing error of the least squares unmixing algorithm that is caused by the intrinsic data variance, system PSF blurring, detection noise, and band-to-band misregistration is analyzed and evaluated. For high unmixing accuracy, image restoration is proposed to remove the PSF blurring degradation. To objectively assess the restoration performance and expedite the design of our application-oriented restoration scheme, and objective criterion based on the measurement of spectral fidelity in frequency domain is suggested. Based on this criterion, a detailed comparison between the conventional Wiener filter and sampled Wiener filter is conducted, which highlights the significance of sampling aliasing and verifies the results obtained visually by other researchers. Our study shows that contrary to restoration for visual purposes, a partial restoration scheme, instead of full restoration, should be used for a better unmixing performance. Also, the sampling aliasing, which is an artifact and should be suppressed in traditional restoration application, is actually a signal component which needs to be restored for unmixing. Under fair SNR conditions ($\ge$30dB), the proposed restoration scheme can reduce the total unmixing error up to 40% to 70% depending on the scene complexity.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.