• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Adaptations to ecological interactions.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9322769_sip1_c.pdf
    Size:
    2.047Mb
    Format:
    PDF
    Download
    Author
    Becerra-Romero, Judith Xiutzal Ixtlilxochil.
    Issue Date
    1993
    Keywords
    Plant ecology.
    Committee Chair
    Rosenzweig, Michael
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Three different aspects of plant adaptations to ecological interactions are examined. The first one is in the area of plant breeding systems. The adaptations investigated in this study involved interactions between male gametes competing for fertilizations on the plant Phormium tenax, an agavoid of New Zealand. In this system I discovered a new type of self incompatibility that depends on the levels of competition among self- and cross-pollinated fruits. This mechanism is parallel to cryptic self-incompatibility in which individual self-pollen grains are not as successful as cross-pollen when competing in the same pistil. The competition-dependent abscission of self-pollinations considered here, however, operates at the level of whole flowers. This form of self-incompatibility may allow a high level of outcrossing to be achieved while it assures seed set when pollinations are scarce. The second case focuses on the interaction between a plant of the genus Bursera and its herbivorous crysomelid beetle Blepharida. This Bursera produces terpenes that are stored in networks of canals that run throughout the leaves and the cortex of the stem. When damaged, there is often an abundant release of resins. Blepharida larvae have developed the behavioral adaptations to overcome the secretive canals of Bursera. Before feeding on the leaves they cut the leaf-veins, interrupting the flow of terpenes. By documenting the growth and survival costs of being on plants of different response strength I was able to show that canals can effectively decrease herbivory even against this specialized vein-cutting insect. The handling time involved in blocking the canals slows down larval growth, delays pupation and increases the risk of predation. Chapter III examines a more complex interaction among plants that produce extrafloral nectaries, ants, and homopterans. An alternative model to explain the function of extrafloral nectaries is proposed. According to this hypothesis, the function of these glands is not to attract ants for defense, but to distract them from tending homopterans by giving them a free source of sugar. Different sources of evidence that support this model are discussed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Ecology & Evolutionary Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.