• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fractal structure of aggregates induced by shear motion.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9322771_sip1_m.pdf
    Size:
    6.888Mb
    Format:
    PDF
    Description:
    azu_td_9322771_sip1_m.pdf
    Download
    Author
    Jiang, Qing
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Civil engineering.
    Committee Chair
    Logan, Bruce E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Aggregates formed by Brownian motion, shear motion, and differential sedimentation are found to be fractals. To characterize the structure and properties of these aggregates, a set of equations was derived to describe the relationship between aggregate size and solid volume, porosity, density, settling velocity and collision efficiency. By extending concepts developed by Friedlander and Hunt for the analysis of nonfractal particle coagulation at steady state, a steady-state size distribution model for fractal aggregates was developed for size intervals dominated by Brownian motion, shear, or differential sedimentation. A non-steady-state size distribution (two-slope) method was proposed for determining three dimensional fractal dimensions. Using size distributions in terms of both aggregate length and solid volume, a method was also developed to obtain the relationship between solid volume and aggregate size for examining the variation of fractal dimensions over a given size range. Coagulation experiments with latex microspheres in salt solutions were conducted to test predictions of the steady-state model and to study the effects of salt concentration and shear rates on the fractal structure of aggregates in both laminar shear and turbulent shear devices. The prediction of the steady-state model over the subrange dominated by shear motion was verified by the results of the experiments at 0.15 M NaCl and a shear rate of 3.4 s⁻¹, and the experiment at 0.6 M NaCl and a shear rate of 0.5 s⁻¹. In turbulent flow, fractal dimensions were not a function of salt concentration. In laminar shear, at NaCl concentration ≤ 0.3 M fractal dimensions were 1.9 to 2.1 with a collision efficiency of 10⁻³. High NaCl concentrations (0.45 to 0.6M) resulted in lower fractal dimensions of 1.4 to 1.7 with a collision efficiency of 10⁻¹. Laminar shear rates of 0.5 to 15 s⁻¹ had little effect on fractal dimensions. Boundary fractal dimensions of aggregates were not sensitive to changes in NaCl concentrations in both laminar and turbulent flow but they were a function of laminar shear rate.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.